Using El Niño Insurance to Mitigate Losses of an Exporting Firm

Dr. Jerry Skees H. B. Price Professor of Policy and Risk University of Kentucky

> Department of Agricultural Economics Seminar University of Kentucky February 17, 2010

- Regulator has approved the a product that will pay in January whereas extreme flooding occurs in Feb–May
- MoU to work with LaPositiva Insurance Company of Peru to offer ENSO Insurance
- PartnerRE will provide reinsurance
- Strong and growing interest among many stakeholders in Peru
- Detailed risk assessment to advance the understanding of how to use an ENSO Insurance payment by lenders to reduce their consequential losses during El Niño

Damages from El Niño Events in the Piura Region (1982/83 and 1997/98)

	Values in		
	millions de soles and percent (%)		
Sector	1982/83	1997/98	
Agriculture	116,923 (31,5%)	118,399 (19%)	
Transportation	183,277 (49%)	374,216 (60%)	
Health	1,355 (0,5%)	1,276 (0,5%)	
Housing	63,240 (17%)	37,456 (6%)	
Education	6,910 (2%)	30,487 (5%)	
Total Soles	371,705 (100%)	621,157 (100%)	
Total US \$	116 Million	177 Million	
Sources: CISMID and INEI			

Extreme El Niño Events of 1982/83 : 1997/98

Start Threshold = 24.5; Exit Threshold = 27

Events in excess of 24 may occur as frequently as 1 in 11 years

Timing of the Contract

Year 1			Year 2		
	January	Feb-October	Nov-Dec	Early January	February– April
	Marketing	The EBIII is in	SST data from	Payments can	Catastrophic
	period with a	force for	ENSO 1.2 is	be made	flooding
	sales closing	possible	used to	before flooding	in the region
	date of	upcoming	calculate	as lenders	
	January 31	severe event	payments	begin to incur	
				costs	

- Sales closing date must occur before buyers can predict an El Niño — Target January 31
- Insurance contract covers ENSO 1.2 (Nov–Dec)
- Payments will be made in early January as business interruptions are occurring

Exporting Firm in Perú Exporting Fair Trade Products

- Exports high value product that has a continuous harvest (All months of the year, exporting roughly the same amount)
- Organized small farmers into farmer associations to supply the product on a contract basis
- Receives a premium for the labeled products (Fair Trade; organic; other labels)
- Owned by private interest and the farmer associations

Consequential Losses for an Exporter of a High Value Product

- Starting Point (Immediate Effects)
 - Profits = Volume x Margins Fixed Costs
 - Volume = f (Farm yields, infrastructure break downs)
 - Margin = f (Quality, processing costs)
- Longer-Term Effects
 - Fixed cost dimensions of a trained labor force
 - Losing access to markets
 - Reputational risk as an unreliable supplier
 - Some trees may be lost causing a longer period to recover to the position prior to the event

Mor	Ionthly Profits in Normal Month					
	Profits = (Boxes Sold) * Ma	rgin				
	Margin					
	Gross Price / Box		\$	14.52		
	Quality Discount		-\$	0.29		
	Processing		-\$	3.30		
	Export + Packing		-\$	4.50		
	Farmer Share		-\$	5.12		
	Net Margin =		\$	1.31		
	At 34,760 Box per Month Re	evenue	= \$1	13,563		
	Fixed Cost (Mostly labor)				\$ 65,000	
	Debt Service per Month				\$ 8,700	
	Net Position				-\$ 31.872	

Monthly Profits in Worst Month

Profits = (Boxes Sold) * Margin

Margin	Normal	(ENSO)	
Gross Price / Box	\$ 14.52	\$	14.67
Quality Discount	-\$ 0.29	-\$	0.59
Processing	-\$ 3.30	-\$	3.69
Export + Packing	-\$ 4.50	-\$	4.50
Farmer Share	-\$ 5.12	-\$	5.28
Net Margin =	\$ 1.31	\$	1.20
At 34,760 Box per Month Re	evenue =	\$ 4	41,828
Fixed Cost (Mostly labor)		\$ 6	65,000
Debt Service per Month		\$	8,700
Net Position		-\$:	31,872

Key Objective: Cut the Time Needed to Return Volume and Profits to the Pre-event Level

Basic starting point

- Manager wants cash early as the event creates problems
- Manager has a major objective to retain all employees even as the volume goes down and profits suffer
- Need cash to cover the fixed costs of labor and debt service
- Manager has a plan to use excess labor during the shortfall time period to help farmers mitigate their problems and start sending quality product sooner — Getting back online has a large intrinsic benefit !

Key Objective: Cut the Time Needed to Return Volume and Profits to the Pre-event Level

Interviews gave us the basic information to build logical relationships regarding how mitigation can increase the volume

Key Objective: Cut the Time Needed to Return Volume and Profits to the Pre-event Level

Changing volume is evaluated using the net margin equations to demonstrate differences in profits given mitigation

Returning to Our Export Firm						
_	Without Adaptation	With Adaptation	Gain from Adaptation			
		U. S. Dollars (\$)				
Dec	39, 863	39, 863	—			
Jan	24,782	24,782	—			
Feb	(9,793)	(3,018)	6,775			
Mar	(20,929)	(15,385)	5,544			
Apr	(31,872)	(27,518)	4,354			
Мау	(31,872)	(27,518)	4,354			
Jun	(31,872)	(27,518)	4,354			
Jul	(29,154)	(23,573)	5,581			
Aug	(23,683)	(15,803)	7,880			
Sep	(9,793)	3,827	13,620			
Oct	7,276	33,698	26,422			
Nov	26,154	39,863	13,710			
Year	(90,892)	1,701	92,594			
	Normal Year Earnings = \$478,360					

Valuing the Insurance

- What value to insure?
- Recommendation Select a sum insured that will give enough funds in January to cover the expected negative returns given adaptation = \$140,333
- ENSO Insurance cost for a contract that starts paying when ENSO = 24 degree Celsius is 11.25% of sum insured
- Payout rate in 1998 = 76% of sum insured
- To get \$140,333 in a year like 1998, you need to scale up (140,333/.76) = \$184,689
- Premium = \$20,733

- Evaluate with expectations regarding frequency of extreme ENSO (e.g., 6.7%)
- EV = Normal Income * (1-.067) + ENSO Year Income * (.07)
- EV with insurance Subtract off premium for insurance in a normal year and consider the value of the insurance in an ENSO year (Gain from Adaptation + Indemnity Payment)

(Go to spreadsheet)

Framing to	Understand Risk	Aversion

With Adaptation		
	No Insurance	With Insurance
14 in 15 years	\$ 478, 000	\$ 458,000
1 in 15 years	\$ (-91,000)	\$ 142,000
Without Adaptation		
	No Insurance	With Insurance
14 in 15 years	\$ 478,000	\$ 458,000
1 in 15 years	\$ (-91,000)	\$ 50,000

Logical Extensions

Firms in the value chain work with

Profits = Volume * Margins

Input suppliers and processing firms should be interested in weather index insurance when a correlated weather risk has the potential to affect both volume and the variables that influence margins (quality, changes in per unit cost as volume changes)

ENSO Insurance for Risk Aggregators

We are working directly with

- 4 Financial institutions
- 1 Business in the value chain
- 3–4 Farmer associations
- Perform risk assessment to inform risk aggregators about the potential value of ENSO Insurance
- Continue working with Peruvian banking and insurance regulator to understand more about how this fits as a warranty-like instrument
- Working with credit risk agencies in Peru to assess how this insurance can change the credit risk rating of financial institutions