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Executive Summary

In recent years, weather index insurance has gained significant international attention. Multilateral
agencies and donors are supporting the development of index insurance products and practitioners
are venturing into this work for the first time. However, designing index insurance products is quite
challenging and requires strong analytics, significant research, access to sufficient quantities of
relevant data, capacity building among local stakeholders, legal and regulatory expertise, etc. Based
on experiences to date, some questioning has begun about the scalability and sustainability of
weather index insurance — in some cases, these questions are motivated by beliefs that data
limitations may cause significant geographic constraints to offering weather index insurance, and in
other cases, that the potential of current index insurance models on poverty reduction is doubtful.
Thus, the theory and implementation of index insurance is at somewhat of a crossroads. In
recognition of these emerging questions, this is the first of several documents that describes the
current state of knowledge on key aspects of index insurance. This State of Knowledge Report (SKR)
is on the data component of developing weather index insurance.

We originally envisioned this SKR as a review of the quantity and quality of data needed to support
weather index insurance offerings — a general guide for practitioners and those in the development
community. Yet, as we considered basic questions about how much data are required or whether the
data quality is sufficient, the answers were almost universally, “It depends.” In assessing risk, data
needs are always contextual. One simply cannot address questions about data in isolation from
broader questions about the type of weather index insurance product being developed, its target
market, and its application. Based on this consideration, we approach our analysis of data
requirements by looking at index insurance designs that tend to be most robust for very limited data.
In other words, what models are most scalable and sustainable in terms of data limitations? Another
standard for scalability and sustainability is in regard to economic development — how does the
insurance product contribute to poverty reduction?

Our conclusions for overcoming data constraints and contributing to poverty reduction converge to
three recommendations. From our analyses and field experience implementing index insurance
projects, we conclude that weather index insurance programs should focus on: 1) consequential
losses from extreme weather events that extend beyond crop yields; 2) catastrophic losses rather
than moderate losses; and 3) risk aggregator products instead of, or in addition to, household
products.

This document is grounded in both our academic economic research and experiences developing and
implementing index insurance programs in lower income countries. Our current interest in weather
index insurance has its roots in analytical work by Skees and Barnett in the 1980s and 1990s in regard
to the U.S. Federal Crop Insurance Program. Along with J. Roy Black, Skees and Barnett developed
the first agricultural index insurance product in the United States — an area-yield insurance product
called the Group Risk Plan (GRP) that is still offered today. Based on our experience in developing
GRP, our interest turned to how index insurance could be used to protect against agricultural losses
in lower income countries where traditional loss-based crop insurance was not feasible. Nonetheless,
area-yield data are quite sparse in lower income countries but weather data, at least in some
countries, are available. Peter Hazell (then working for the International Food Policy Research
Institute) had considered this possibility and worked with us to introduce these ideas to the World
Bank via a project on weather index insurance in Nicaragua, in 1998. Since 2001, GlobalAgRisk has
been developing and implementing index insurance programs in lower income countries. Currently,
GlobalAgRisk has projects in Mongolia, Peru, and Vietnam, and examples from our experiences are
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used throughout the SKR. As academics, we also frequently write articles on index insurance for
scholarly journals — sharing our evolving understanding of these products and encouraging the
research efforts of our colleagues to further this work.

We share our background to demonstrate our extensive experience with weather index insurance
and our long-term commitment to the fundamental principles on which index insurance is based.
This journey of discovery has been an iterative process through which theory and practice synergize
to advance our understanding of index insurance product development. Developing this SKR is
another step in that process. Writing this document has allowed us to consider our recent
experiences, lessons learned from other index insurance programs, premises from economic theory
and research, and the reality of data constraints to advance and formalize new thinking on weather
index insurance. We freely admit that, as a result, we now critique some of the ideas and methods
that we once helped develop. Such is the evolution of knowledge.

Chapter 1 provides introductory material on weather index insurance. We remind the reader that
evaluating weather risks is a very different process than many scientific endeavors undertaken by
economists. Whereas much economic research discounts outliers, extreme values are the most
important observations for weather risk analysis. Thus, when sparse data suggest that an event may
be an outlier, insurance underwriters will typically use any information they can find to learn more
about that event. Even so, the available data typically consist of small samples, which can cause large
estimation errors. For this reason, insurance underwriters try to understand more than simple
statistical relationships. They may work with scientists who understand the underlying physical
processes of weather to evaluate patterns and any potential non-stationarity of data.

In Chapter 1, we also present a conceptual model of how insurance can facilitate poverty reduction.
We review why traditional loss-based insurance is infeasible in rural areas of many lower income
countries and present weather index insurance as a potentially viable alternative. The chapter also
develops a conceptual framework for evaluating potential index insurance contracts under idealized
conditions — with sufficient access to relevant, high-quality data. In actuality, data constraints create
a contrast between how index insurance contracts are assessed in theory and how they are assessed
in practice. Basis risk, an inherent constraint of index insurance, is discussed in detail, and we critique
some of the methods practitioners use to demonstrate that they have reduced the basis risk
associated with weather index insurance products.

Chapter 2 transitions from the conceptual model presented in the introduction to real-world data
constraints facing practitioners developing index insurance products. In particular, Chapter 2
describes how, in a data-constrained environment, one can use qualitative information to determine
relationships between potential weather indexes and realized losses of potential insureds. We argue
that to gain an understanding of a potential for index insurance products, qualitative data obtained
from scientifically based risk assessments with participating key stakeholders may provide superior
insights to sparse quantitative data.

Chapter 3 describes data needs for weather index insurance. Historical data are needed to evaluate
and price the risk, and real-time data are needed to make payments. It is here that the contextual
nature of data requirements becomes most apparent. Rather than proffering absolute minimum data
requirements, Chapter 3 describes how various contextual elements (e.g., spatial and temporal
presentation of the weather risk; perceptions regarding the validity, security, and credibility of the
data source; access to alternative measures of the underlying weather phenomenon; and
sophistication of the target market) can affect data requirements.
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Chapter 4 examines the real data constraints associated with using weather stations for index
insurance. Scaling up their current efforts for weather index insurance, many of the poorest
countries lack or are unable to maintain this infrastructure. We review these issues using data from
Africa in addition to cost data obtained from providers of weather measurement instruments. We
demonstrate why these data constraints are less binding for risk aggregator products. Next, Chapter
4 develops our assessment of the current state of satellite-based technologies. While we are
enthusiastic about the promise of these technologies, we conclude that, with the exception of some
limited applications for pastoral settings using the Normalized Difference Vegetation Index (NDVI),
further developments are needed before satellite-based data sources can support weather index
insurance offers. We predict that major breakthroughs are likely once combined information sources
used to develop index models begin to demonstrate their value in developing insurance products to
protect against catastrophic risk.

Chapter 5 presents important lessons derived from preceding chapters and from experiences to date
developing and implementing weather index insurance in rural areas of lower income countries. We
begin by evaluating selected aspects of some current index insurance programs. We then present our
recommendations for advancing weather index insurance given data limitations. As mentioned
previously, those recommendations are: 1) expand the focus beyond just crop yields to
consequential losses; 2) transfer catastrophic rather than moderate losses; and 3) initially target risk
aggregators rather than, or in addition to, households.

Chapter 6 presents a number of outstanding research questions related to key challenges to demand
for weather index insurance. We also develop some research questions on both data availability and
how data can best be used in developing weather index insurance products. This research agenda is
supported by two technical appendixes. Appendix B, contributed by Dr. Mario Miranda, develops a
research agenda to test the properties of extreme events relative to moderate weather events. For
some time, we have hypothesized that the covariance of weather events and losses is likely not
linear throughout the distribution. Given the correlated nature of weather risk we believe that when
extreme events occur, classic diversification strategies will break down as the strategies used (e.g.,
having a number of farm enterprises) will all suffer losses at the same time. In short, we will test if
the variance-covariance matrix changes given extreme weather events. If the answer is “yes,” as we
suspect, this research agenda will add rigor to our recommendations on catastrophic insurance to
cover consequential losses. Dr. Upmanu Lall contributes Appendix C, which reviews the potential for
developing weather index insurance based on global teleconnections using sea surface temperature
(SST) measures to learn if we can replicate our work on “forecast insurance” in Peru in other areas.
Appendix A details our use of an SST measure as the basis for an index insurance product that
protects against extreme flooding in the northern coastal region of Peru.

Thanks to our grant from the BMGF, we will continue working on research topics described in this
document. We view this SKR as a work-in-progress. We welcome comments and critiques of the
ideas presented. Our second SKR focuses on legal and regulatory component of developing weather
index insurance, in particular, the legal and regulatory challenges of creating index insurance
products designed to protect against consequential losses. We have experience designing
consequential loss index products in two very different jurisdictions: Peru and Vietnam. The third SKR
focuses on evaluating the scalability and sustainability of index insurance products. The fourth, final
SKR is a synthesis of the previous SKRs, with a more thorough discussion of index insurance as a tool
for reducing poverty and supporting rural economic development. In each case, our research and
inquiry is informed by economic theory and empirical analysis that includes our field experiences in
Peru, Mongolia, and Vietnam, and what we have learned from others’ experiences.
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Chapter 1 Introduction and Conceptual Model

This document presents our analysis of the current state of knowledge regarding data systems
to support weather index insurance. Part of that analysis identifies the limits of current
theoretical understanding and empirical practice in a developing country context. Additional
work is needed to make weather index insurance more effective, efficient, sustainable, and
scalable. This state of knowledge report (SKR) does not address all the challenges and
constraints to developing index insurance markets. Our goal is to provide a better understanding
of how index insurance can be developed within existing data constraints with a long-term
perspective that identifies important research needs.

We assume that readers of this SKR have at least a basic understanding of index insurance and
its advantages and disadvantages relative to other forms of insurance. Nonetheless, readers
may want to refer to more detailed documents to gain a deeper understanding (e.g., Skees et
al., 2007; Barnett and Mahul, 2007; or GlobalAgRisk, 2006, 2009). The focus of this SKR is
market-based products — products sold to individuals or firms operating in the private sector.
Still, many of the key data issues discussed in this document are also relevant to products for
non-market institutions such as governments and donors. This introductory chapter frames
elements important to the body of the SKR.

Designing index insurance in lower income countries involves expert judgment in an
environment of significant data constraints. Practitioners are increasingly recognizing the
importance of the contextual nature of weather risk and are adapting their methodologies for
evaluating data.” For example, reinsurers are moving away from set, arbitrary data standards —
requirements for at least 30 years of data, or an insured must be within 20 km of a weather
station, etc. — to more analytic, context-specific approaches that consider how a variety of
sources can be used to evaluate weather risk. Thus, while we hope that this document is
straightforward and pragmatic, it will not be a checklist of requirements for data systems that
support index insurance. Instead, our intention is to discuss key issues that will help
practitioners understand, identify, and address data constraints and also motivate additional
important research that may lead to innovation in developing appropriate weather index
insurance products.

1.1  Methodologies for Insurance Analysis

Our approach to analyzing data issues is, in many ways, similar to that of an insurance
underwriter. Readers with scientific or statistical backgrounds will be familiar with many of the
techniques described in this document. For example, many scientific disciplines are interested in
modeling relationships between variables. Thus, the coefficient in a regression analysis is
interpreted as, “A one unit change in the independent variable results, on average, in an X unit
change in the dependent variable.” As with many statistical analyses, the emphasis is on the
average or central tendency. In contrast, insurance underwriters are generally more concerned
with what happens in the extremes. They want to know what variables cause extreme losses for
insureds (e.g., drought for insured crop farmers), the probability that these extreme events will
occur, and the relationship between the extreme events and insured losses.

In this document, “practitioner” refers to those individuals developing and implementing an index
insurance program such as insurers, reinsurers, international development agencies and firms, etc.
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Insurance underwriters evaluate risk using both statistics and some knowledge of the underlying
physical processes that cause extreme events. Therefore, insurance practitioners can benefit
from scientific findings of other disciplines (e.g., plant growth analysis, climate circulation
models, household livelihood survey data, etc.) even though the objectives of insurance
practitioners may be quite different from those of the scientists collecting and reporting raw
data. For example, extreme events that scientists in other disciplines may commonly omit as
outliers tend to be among the most important sources of data for insurance practitioners (see
Collier, Skees, and Barnett (2009) for further discussion of central tendency, outliers, and
insurance). Likewise, many statistical procedures are helpful for understanding relationships
around the most frequently occurring outcomes, but are not very helpful for describing the
extremes. Relationships between variables may be quite different under extreme conditions
than under typical conditions. Thus, different statistical methodologies are also needed for
evaluating risk than those typically used in many scientific disciplines. Recognizing the
distinction between insurance underwriting and typical scientific methods is important for
scientists and other practitioners who venture into developing index insurance products as the
misapplication of scientific findings and statistical procedures can lead to inaccurate conclusions
about the risk.

A specific problem for insurance practitioners is that extreme events tend to occur very
infrequently. Fewer data observations of the event mean that 1) the underlying scientific
processes tend to be less well-understood; and 2) statistical results are much less precise. Given
the lack of data for extreme events, insurance underwriters turn to numerous other sources of
information when evaluating insurable risks. For example, to understand extreme rainfall
patterns, insurers may compare data from weather stations, satellites, airplanes, weather
balloons, tree-ring analysis, lake-bed analysis, etc. Different data sources tend to agree around
the most frequently occurring values, but may diverge greatly at the extremes, and insurance
practitioners must determine how much weight to give each of these sources when estimating
risk. Thus, insurance analysis must rely on both strong scientific and statistical analysis as well as
expert judgment.

1.2 Two Types of Indexes

Data supporting index insurance products can be classified in two broad categories: indexes that
aggregate losses over a group and weather-based indexes. Aggregate loss data describe losses
across many individuals, typically in the same geographic region. The index of group losses
serves as a proxy for the losses of individual members of the group. The Group Risk Plan (GRP) in
the United States and the Index-based Livestock Insurance (IBLI) Program in Mongolia are
examples of index insurance programs using aggregate loss measures. The GRP uses county-
yield data for specific crops as the index for determining compensation (Skees, Black, and
Barnett, 1997). The Mongolia IBLI uses government-developed estimates of mortality by species
for concentrated geographical areas as the index for indemnities (Mahul and Skees, 2007). An
aggregate loss index insurance contract can be considered as a type of valued policy.> With
these products, the aggregate data are on a large enough scale to reduce the likelihood that any
individual insured can significantly influence an indemnity. Thus, these products also have lower
moral hazard and adverse selection than traditional insurance products.

® For a thorough discussion of the insurance classification of index insurance contracts please see
GlobalAgRisk. 2010.
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Weather-based indexes use measurements of weather events highly correlated with losses of
the insured as the basis for an insurance payment. The objective of the index is not to serve as a
direct proxy for loss, but rather as a predictor or proxy for the insured event itself, e.g., flood or
drought. Weather-based index insurance can be likened to contingency insurance in that a
specific event (e.g., death, loss of leg, etc.) can trigger an insurance payment. A commonly used
weather-based index is rainfall data from local weather stations; however, other measures serve
as weather-based indexes, as well., For example, the Normalized Difference Vegetation Index
(NDVI) is a measurement of vegetation density and has been used to provide index-based
drought insurance (Box 8 in Chapter 4). Another index insurance product uses sea surface
temperatures (SST) as a predictor of extreme flooding in northern Peru. The SSTs used are
indicative of extreme El Nifio events, the primary cause of catastrophic flooding in that region
(Appendix A).

Both types of indexes have their relative merits and shortcomings. Aggregate loss indexes are
generally easier to develop and scale up than weather-based indexes. However, in lower income
countries, weather data tend to be more readily available than aggregate loss data. Also,
weather data are often easier to collect and may be less prone to tampering than, for example,
subregional yield data, which have sometimes been adjusted to support political agendas. While
aggregate loss indexes may be feasible in some regions of the world (Carter, Galarza, and
Boucher, 2007), this SKR focuses on data issues related to weather-based indexes.*

To date, many weather index insurance pilots have been based on weather station data. For
some of our examples, we use weather stations as a helpful point of reference for readers, but
we want to emphasize that in most regions of the developing world, weather station
infrastructure is insufficient to support index insurance. Thus, practitioners need a broader
vision for what data can be used to support index insurance for many regions, including satellite
and other forms of remotely sensed data. We develop this vision as the document progresses
and describe alternative data systems.

1.3  Two General Types of Products

Two general classes of products have been developed for market-based index insurance
programs: those for households and those for risk aggregators. Household index insurance
products have often been designed with the intention to protect against crop-yield losses due to
adverse weather risk; however, other designs are also possible such as contracts that protect a
household's livelihood portfolio more generally from a specific, severe weather risk. Risk
aggregator refers to firms such as lenders and agricultural value chain members who are
negatively affected by the correlated production risks in a geographic region. For example, given
the correlated nature of drought risk, lenders are affected by the drought exposure of their
agricultural borrowers. If a drought occurs, many borrowers are likely to experience repayment
difficulties concurrently. Products designed to protect these risk aggregators are intended to
protect the solvency of the firms and improve access to their services. As we discuss below, the
target market for the index insurance product has significant implications for which data sources
can potentially be used to support the insurance offer.

4 . . o . . .
Unless otherwise stated in the SKR, we use the terms “index insurance” and “weather index insurance”
synonymously to refer to insurance products using weather-based indexes.
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1.4  Background and Historical Context: Practice and Theory

In the 1980s, the development community essentially gave up on crop insurance being workable
in developing countries (Hazell, Pomareda, and Valdes, 1986). Given the characteristics of
agriculture in developing countries (small farm sizes, intercropping, etc.), developed country
models of crop insurance were simply not working in developing countries. The potential use of
index insurance in developing countries started to gain attention in the late 1990s (Skees, Hazell,
and Miranda, 1999). The history of these developments is available from Skees (2008). Much of
the literature and experience since then has focused on using index insurance to replace crop
insurance with an underlying belief that data would be available to develop effective indexes.
The data requirements for index insurance tend to be less than those for traditional crop
insurance. Copious data are required for underwriting and rating traditional crop insurance.
Additionally, while the contract is in force, it may be necessary to send personnel into the field
to collect data on the activities of insureds and/or data for settling claims. In contrast, weather
index insurance uses established weather information systems to provide all the data required
for underwriting, rating, and settling claims, and there is no need to monitor the activities of
individual insureds.

Most of the scholarly literature on weather index insurance is based on a traditional agricultural
insurance framework because weather index insurance was developed to overcome problems
with traditional crop insurance in developed countries (e.g., Skees, Hazell, and Miranda, 1999).
As with the traditional crop insurance literature, most weather index insurance studies focus on
smoothing income from a single crop in a single year (Wright, 2006). This framework does not fit
for developing countries where small households are engaged in a host of livelihood strategies
including farming. Instead, much of what is developed in this document is framed with a
broader consideration of households protecting their wealth positions over time. By framing the
insurance decision as a portfolio problem for small households striving to protect wealth over
time, the focus of linking index insurance to a single crop within a single year becomes less
important. Instead, the focus is on protecting household wealth from catastrophic events that
have multiple consequences.

The risk of catastrophic events can also cause risk aggregators to ration the services they
provide to poor households. Index insurance products targeted to risk aggregators can increase
the likelihood that service providers throughout the value chain will provide poor households
with access to their services. In fact, if the objective is to improve the lives of the working poor,
products targeted to risk aggregators may be the most effective place to start. As will be
explained later in this document, data constraints are less problematic for index insurance
products that are targeted to risk aggregators than for those that are targeted directly to
households.

1.5 Conceptual Framework

This chapter describes the conceptual underpinnings of index insurance. Deconstructing index
insurance allows one to identify critical points where data limitations create challenges for
successful product development. Chapter 2 builds on this background by discussing strategies
for addressing these data challenges.
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1.5.1 Why Insurance?
Consider a decision maker (a household or a business) with initial wealth w, who invests an

amount K (KS Wo) in various activities which are expected to generate positive net returns so
that wealth will increase over time. Each activity A,(i =1, 2,...n) generates a periodic expected
net rate of return E(ri). In any given period, the realized net rate of return r. may differ from

E(r,-) due to a number of factors including, but not limited to, variability in weather conditions.

For example, one of the activities may be production of a particular crop for which realized yield
depends critically on adequate rainfall.

The realized periodic net return on the entire portfolio of activities is g = sz’(ﬂ' where t; is
i=1

n
the proportion of K that is invested in activity A; and Zr, = 1. The variance of net returns for
i=1

n n
the portfolio is calculated as of = szkoi where o3, is the variance in returns on the single

i=1 k=1
activity when i =k and the pairwise covariance in returns between activities when i # k .Thus,
the overall variability in net return for the portfolio of activities depends on the variance in net
return for each of the activities, the proportion of the overall portfolio that is invested in each
activity, and the covariances in net returns across the different activities. As long as returns are
not perfectly, positively correlated, engaging in more than one activity provides some
diversification benefit, reducing the variability in the net returns for the overall portfolio — i.e.,
because the activities are not perfectly correlated, the variance of the portfolio is less than the
weighted average of the variances for each of the activities. Negative or small positive
covariances provide significant diversification benefits, while large positive covariances create
little diversification benefit. A fundamental challenge for rural areas in many lower income
countries is that many of the available wealth-generating activities are susceptible to the same
extreme weather events. Thus, increasing the number of activities in the portfolio may provide
little protection against very low portfolio net returns when extreme weather occurs.

The impact of extreme weather events is not limited to high variability in single period net
returns. Extreme weather also has long-term impacts on wealth. Consider a simple two-period
model for the evolution of wealth

W, =W, —K+(K+R)— AL

where the decision maker’s ending wealth W, is equal to w, minus the level of investment K

plus the realized return on that investment (K +R, where R may be positive or negative) minus
any asset losses AL that occur during the period. Simplifying this expression yields

W, =W, +R-AL

The occurrence of an extreme weather event may affect ending wealth W, by reducing the

realized return R and/or causing losses to assets such as buildings or livestock (i.e., AL>0). This
evolution of wealth model could be generalized from two periods to an infinite number of
periods. Note that if w, <w,, the decision maker will have less to invest in subsequent periods,
reducing the level of wealth in future periods. Extreme events may also reduce the growth rate
of wealth. If households must reduce consumption or sell livelihood assets to cope with the
losses of a catastrophic event, it may reduce their expected returns in future periods (Barnett,
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Barrett, and Skees, 2008).° Thus extreme weather events affect not only single period net
returns but also the long-run accumulation of wealth.

Risk-averse decision makers have utility functions that are increasing in expected wealth and
decreasing in risk (variability in wealth).

That is,

ou >0 and

5 <0.
E\W ao'W

U= f(E(W), oj,) with —

As risk-averse decision makers recognize their vulnerability to extreme weather events, they are
likely to allocate their portfolios to activities that are less susceptible to extreme weather (e.g.,
plant cassava instead of maize). But since lower risk activities generally offer lower expected
rates of return, this decision also affects the long-term trajectory of wealth accumulation. Thus,
exposure to extreme weather events reduces wealth accumulation whether directly by
destroying assets and reducing net returns in the period of the shock or indirectly by
encouraging low-risk, low-return portfolio allocations across all periods.

Insurance purchasing can be conceived as another activity in the decision maker’s portfolio.
Insurance purchasing reduces expected wealth E(W) because the premium paid by the insured

must exceed the expected indemnity to compensate the insurer for taking on the risk. However,
insurance purchasing also reduces the variance in wealth alﬁ, because, the decision maker

receives an indemnity only when R is lower than expected and/or when asset losses AL occur.
Risk-averse decision makers will purchase insurance only if the utility gained from reducing the
variability in wealth exceeds the utility lost from having a lower expected wealth.

Consider an example where we assume that a decision maker manages a portfolio that consists
of only one activity — crop production. Also, assume that there are n+1 possible weather
outcomes — n types of bad weather, each occurring with some probability r; plus the

possibility of good weather occurring with probability [1 —Zn,} .
i=1

These assumptions simplify the presentation without loss of generality. Also assume that with
good weather there are no yield losses, the realized return is Ry and no asset losses occur. Bad
weather events can cause crop-yield losses YL, and asset losses AL;. When bad weather occurs,

returns are presented as the return on investment in good years minus yield losses

> We could model this change in the growth rate using a household production function that changes
functional forms depending on the levels of physical and human capital available to the household.
Intuitively, if a household sells a productive asset such as a plow or livestock, it is likely to reduce their
farming productivity. As another example, if households must reduce their caloric consumption, it can
affect both the physical and intellectual development of children in the household, reducing the future
labor productivity of the household (Grantham-McGregor et al., 2007).
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Without insurance purchasing, the decision maker’s expected utility is
n n
E(U)NI = l_zni U(WO +Rg)+znjU(W0 +Rg _YLI- —AL[)
i=1 i=1

The decision maker can also purchase an insurance policy at a premium rate p that provides a
sum insured (maximum possible indemnity) /. Thus, the premium cost is p/. With insurance

purchasing, the decision maker’s expected utility is

n

E(U), = [1 —Zn:n,]U(Wo R, +b(l)—pi)+ > mU(Wp + Ry YL, — AL +b(1)—pl +q;1)
.=1 :

i=1

where g; is an indemnity function that determines the magnitude of the indemnity conditional
on an indemnity being triggered and »(/) is the monetary value of any ancillary benefits
associated with insurance purchasing reducing risk exposure (e.g., improved access to credit),

thus @>0.
ol

Define p™® as the premium rate that would cause the decision maker to be indifferent to being
insured or uninsured. Then the decision maker would be better off by purchasing the insurance

if the premium rate is less than p™®. Obviously, p™® depends on the decision maker’s utility
function (i.e., how risk averse is the decision maker?), the magnitude of potential yield losses
YL, relative to Ry, and the magnitude of potential asset losses AL; relative to W, .

As will be developed later, it also depends on the covariance between g; and YL, , the covariance
between g;and AL;, the magnitude of any ancillary benefits associated with insurance
purchasing (which likely also depends on the covariances between g;and YL;and g;and AL, ),
and the decision maker’s subjective assessment of the probability of loss r; and associated
magnitudes of losses YL, and AL;.

While we have modeled the above in a household-level expected utility framework, the model is
generalizable to risk aggregator firms in many contexts. In neoclassical economic models, firms
are often modeled as risk neutral. These models are built on assumptions that firms can fulfill
their demand for physical capital and labor and that these factors can easily be replaced. In
reality, these assumptions often do not apply. Catastrophic weather events can severely disrupt
rural risk aggregators in developing countries (Box 1). Because of these business disruptions, it
seems likely that many risk aggregators may be risk averse, especially for catastrophic,
correlated weather risks.
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Box 1 Risk Aggregator Portfolios

Consider a bank that holds a portfolio consisting of n loans. Each loan L; (i =1,2, n) generates a
periodic net return r; =Int; —C where Int; is the interest earned on the loan and C is the bank’s cost

of capital on the funds that have been loaned (which, for simplicity, we will assume does not vary
across loans). In a given year, the realized net return for a specific loan is largely a function of whether
the borrower is able to repay the loan at the agreed terms. In some cases borrowers may experience
losses that make it difficult or impossible for them to repay their loans. They may be able to repay only
part of the loan or perhaps they are able to repay the entire loan but only after renegotiating the terms
so that the net return for the lender is reduced.

Assume that for each loan L there are m possible discrete levels of net return for the lender. The

m
variance of net returns for loan /; is calculated as 0,-2 = Zal-j [rij —E(r,)]z where ¢; is the probability
Jj=1

of net return level j for loan L and E(n) is the expectations operator. The periodic net return on the

n
bank’s entire loan portfolio is R = ZWiri where w; is the proportion of the total value of the portfolio
i=1

n
that is invested in loan L; and ZW,- =1. The variance of net returns for the portfolio is calculated as
i=1

2 q 5 B a .
W,wka,-i where o is the variance in returns on the single loan when i =k and the

NIE

n
op = >
i1

k:

Il
[N

n n
pairwise covariance in returns between loans when i #k with ZW,- =1 and Zwk =1.Thus, the

i=1 k=1
overall variability in net returns for the bank’s loan portfolio is a function of the variance in net returns
for each of the loans, the proportion of the overall portfolio that is invested in each loan, and the
covariances between the net returns for each loan.

If the net returns generated from the loans are not highly correlated (the covariances are low), the
variance in net returns for the bank’s loan portfolio will be greatly reduced. However, if the loan net
returns are highly correlated, the variance in net returns for the bank’s loan portfolio will be quite high.
This is the problem faced by banks that lend to borrowers who are exposed to spatially correlated,
catastrophic, weather risks. A single catastrophic weather event could affect a large proportion of the
bank’s borrowers and result in very low net returns for the loan portfolio.

1.5.2 Probability Distributions of Loss, Cause of Loss, and the Index

The above model describes the accumulation of wealth and household decision making in the
presence of extreme events. Here, we develop a conceptual framework that describes how
practitioners would approach index insurance product design in an ideal world, if they had
sufficient quantitative data. However, it is important to remember that in many lower income
countries, statistical analyses described herein will not be possible due to data insufficiencies.
Methods to overcome these data constraints are described in the next chapter.

This framework is an important benchmark for practitioners seeking to design sustainable
insurance products. It is motivated by two principles. First, the insurance should be priced based
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on the risk being transferred to the insurer.® Second, the indemnity should be highly, positively
correlated with losses of insureds. Otherwise, purchasing the insurance is not likely to benefit
the insured as it would not effectively reduce the volatility in ending wealth.’

Regarding the first principle, pricing the risk, practitioners need data based on the mechanism
used for paying insurance indemnities. For weather index insurance, the mechanism
determining indemnities is the weather index (e.g., rainfall levels at a specific weather station);
for traditional forms of insurance, the mechanism for determining indemnities is an on-site
assessment of losses (see Box 2 for a comparison of traditional and index-based insurance).

Box 2 Data Constraints Create the Need for Index Insurance

In theory, a loss-based insurance product could be offered that makes payments based on losses
experienced by the insured. In many respects, this would be the most straightforward way to insure
against losses caused by extreme weather events because payments are based directly on the losses
experienced by the insured. But this direct connection between the loss experienced by the insured
and the payment received by the insured also causes significant problems. Some potential insureds will
have greater loss exposure than others. To offer a loss-based insurance product, the insurer must be
able to accurately estimate the loss distribution for each potential insured and charge a premium rate
that accurately reflects the potential insured’s loss exposure. So those with higher (lower) loss risk will
be charged higher (lower) premium rates. But the data required to estimate a loss distribution for
every potential insured are often not available. If the insurer is unable to accurately classify potential
insureds according to their loss exposure, the pool of insurance purchasers will be disproportionately
composed of those who have been offered premium rates that understate their actual loss exposure.
This problem, known as adverse selection, will undermine the long-run sustainability of the insurance
product.

Another problem with loss-based insurance products is moral hazard — a reduction of insureds’
incentives to reduce their exposure to losses since insurance payments will at least partially
compensate for any realized losses. For example, in flood prone areas, those who purchase loss-based
insurance may be less likely to invest in building levies or elevating buildings. Moral hazard can be
controlled to some degree by policy provisions requiring the insured to utilize specific risk mitigation
strategies, but the cost of monitoring and enforcing these policy provisions can be excessive.

® The risk being transferred to the insurer, called the “pure risk” is but one component of the cost of
providing insurance (e.g., administrative costs are another). For market-based insurance products, all
costs of the insurance must be passed on to those purchasing the insurance. The important point
regarding pure risk is that the price of the insurance is directly related to the amount the insurer is likely
to pay in indemnities. Please see Collier, Skees, and Barnett, 2009, for more on insurance pricing
fundamentals. Returning to our expected utility model, assume that an insurance product is created to
protect against losses from the m worst weather outcomes (m=<n). The premium rate p comprises the
pure risk g and other costs oc such as administrative costs (i.e., p=g+oc ). For insurance to be priced

m

sustainably, g= Zn,q,- where ; is the probability of the insured event i and g; is the rate of insurance
i=1

indemnity for event i. In other words, the pure risk premium equals the (expected) rate of indemnity.

7 Insurance is priced based on the pure risk as g and other costs oc, and therefore, has a negative
expected return. Generally, insurance is beneficial to decision makers when 1) indemnities have a large,
positive covariance with losses, and 2) decision makers are risk averse. Insurance may also create
additional benefits as described in the expected utility model.
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Deductible and co-payments are also often used to help control moral hazard.

A final problem with loss-based insurance is the very high administrative and delivery costs. As
indicated earlier, the insurer must assess the loss exposure (estimate the loss distribution) for every
insurance applicant. This often requires traveling to the exact location where any insured losses would
occur. While the policy is in force, it may be necessary to travel to the location again to make sure that
the insured is abiding by all relevant policy provisions. Finally, in the event of an extreme event that
triggers an insurance payment, the insurer would again have to travel to the location to assess the
magnitude of loss and determine the payment due the insured. These administrative and delivery costs
are quite high even in developed countries where transportation infrastructure is good, insurers have
access to the latest computer and communications technologies, and the insured value for a single
policy may be quite large. In developing countries transportation infrastructure is often not good
(especially in rural areas), insurers often do not have access to the latest in computer and
communications technologies, and the insured value for a single policy may be quite small.

High administrative and delivery costs, along with adverse selection and moral hazard, make loss-based
insurance infeasible for insuring against extreme weather events in rural areas of most
developing countries. Index insurance is designed to address each of these problems. With
index insurance there is little potential for adverse selection or moral hazard because the
payment is based on the realized value of the index rather than on the insured’s realized
loss. Administrative and delivery costs are greatly reduced because there is no need to
assess each potential insured’s loss exposure, no need to monitor for violations of policy
provisions by insureds, and no need to assess the actual losses experienced by insureds.
Thus, the lower data requirements for index insurance make it feasible in some regions
where traditional insurance is not.

In principle, index insurance could be tailored to each insured, but in practice, sufficient historical data
are not available and the data that are available lack the spatial specificity, i.e., the spatial resolution
with which a data system records measurements that would be required to estimate a unique
probability distribution for each insured. For these reasons, index insurance is based on a generalizable
index. For example, Figure 1 presents a probability distribution for an index based on November—
December average sea surface temperatures (SST) measured off the northern coast of Peru in the
composite ENSO Regions 1 and 2, called ENSO 1.2. High SSTs are correlated with flooding in northern
Peru, so this index is being used as the basis for an index insurance product that protects against flood
losses (Khalil et al., 2007).
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Figure 1 November—December Average Sea Surface Temperatures in ENSO Region 1.2
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Source: Authors using NOAA historic data from 1979 to 2008

Whatever the mechanism, the principles are the same. Practitioners need to know the expected
indemnity of the insurance contract they design, which depends, of course, on the probability of
an insured event occurring. For example, if an insurance product made payments based on
flooding, the insurer would need to know the probability of flooding. Practitioners need data on
historical flood events to assess this probability. Flooding data would be organized based on the
frequency and severity of flood events into a probability distribution, as shown in Figure 2. From
the probability distribution, insurers can estimate the expected level of indemnities for the
insurance product and can, thus, identify a sustainable price for the insurance.
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Figure 2 Hypothetical Probability Distribution of Flooding

2.5%

2.0% -

1.5%

Probability

1.0% A

0.5% -

0.0% T T T T T T T |

Meters above Flood Stage

Source: Authors

In practice, accurately estimating the probability distribution for a weather index can be quite
difficult. Many data are needed to accurately estimate the statistical characteristics (or
moments) of the distributions that are of interest to a practitioner (Box 3). In many cases, these
data are simply unavailable in developing countries.

Box 3 Estimating the Moments of a Distribution

Sample data are used to fit a probability distribution. For example, a sample of 30 years of historical
cumulative rainfall data for the month of June collected at a specific weather station can be used to fit
a probability distribution. The shape of a parametric probability distribution can be summarized by a
few standard characteristics called moments. The basic moments of a probability distribution are as
follows:

First moment — central tendency: the mean of the distribution.

Second moment — variance: describes how potential outcomes are positioned relative to the mean. It is
small when potential outcomes are narrowly distributed around the mean and high when they are
widely distributed around the mean. The standard deviation (sd) is the square root of the variance.

Third moment — skewness: characterizes the symmetry of the distribution. Skewness is equal to zero if
all the data are symmetrical around the mean as with a perfect bell curve. It is negative if there is a fat
tail (many low probability events far from the mean) on the right and positive when the fat tail is on
the left.

Fourth moment — kurtosis: measures how data are stacked over the distribution. With a high kurtosis,
there is a distinct peak near the mean that declines rapidly. Low kurtosis is relatively flat near the mean
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so that a larger proportion of the events in the population are found in the tails.

An approximation used in many applications is that a sample of at least 30 observations is required to
estimate the central tendency and variance with an acceptable degree of accuracy. But this is just an
approximation. More specifically, the accuracy with which sample data can estimate the true central
tendency of a distribution is shown by the square root of n rule.

S
standard error of the estimate = —

Jn

This shows that the accuracy with which sample data estimate the true central tendency increases with
the sample size and decreases with the standard deviation of the distribution. Accurately estimating
higher moments of the distribution requires even larger sample sizes. The sample size needed to
estimate skewness and kurtosis is much higher than what is needed for mean and variance. Whereas
the mean and the variance deal with the bulk of the distribution, skewness and kurtosis are essentially
measures of extreme, rare, events which may be underrepresented or overrepresented in a small
sample. As a rule of thumb, for a given sample size used to estimate the mean and variance of a
distribution at some desired level of accuracy, a sample size 6 times larger is required to estimate
skewness at the same level of accuracy and a sample size 24 times larger is required to estimate
kurtosis. For example, if 30 years of data are sufficient to estimate the mean and variance of the
distribution of a weather variable with some desired level of accuracy, approximately 180 and 720
years of data are needed to estimate skewness and kurtosis, respectively, with the same level of
accuracy.

In sample vs. out of sample. When sufficient data are unavailable, practitioners must estimate the
distribution given the data they have. Regarding the skewness and kurtosis in particular, this practice
relies heavily on the few extreme values (i.e., catastrophic events) available in the data. In this case, in
sample values may be very poor predictors of out of sample values (e.g., extreme events in the future).
In other words, the in sample distribution may not accurately reflect the actual but unknown
distribution. Ignoring this limitation can lead practitioners to believe that they have accurately
accounted for catastrophic risk exposure when, in reality, this may not be true. A probability
distribution fit from limited in sample data may greatly underestimate or overestimate catastrophic
risk exposure.

Additionally, if the risk is changing (e.g., due to climate change, multi-year weather cycles,
hydrological engineering developments on rivers, etc.), practitioners must adjust for this in
estimating the distribution. Chapter 3 discusses these difficulties more fully; here, we want to
note that accurately estimating a single probability distribution for a weather risk can be
challenging because of data constraints (see Box 4 for an illustration of how limited data can
easily lead to misestimating the probability distribution).

Box 4 Working with Small Samples

To further illustrate the sensitivity of getting the correct expected value for the underlying index, we
demonstrate the standard error of the estimate with a Monte Carlo simulation. Practitioners who
strive to develop index insurance products would be well-served to consider sampling issues in this
fashion. What is presented below is a relatively straightforward process that is designed to put some of
these problems into context.

Under the strong assumption that a variable is normally distributed, the square root of N rule can be
extended to demonstrate errors. If the true distribution is known to have a mean of 100 and a standard
deviation of 50, one can quickly gain perspective on the sampling errors that are possible. Having this
level of risk is not uncommon for rainfall in many regions of the world. Table 1 provides the lower and
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upper bound for this distribution at the 95 percent confidence interval, given different sample sizes.

Table 1 Range Boundaries for Confidence Intervals

Sample Size Lower Bound Upper Bound
10 53 147
15 61 139
20 66 134
25 70 130
30 73 127

Confidence intervals are a measure of the precision of an estimate. Of course, these errors can be even
greater when the distribution is not normal or if the distribution is not stationary.

Working with small samples also creates opportunities for misestimating the pure risk. For illustrative
purposes, once again we assume that the index is distributed normally and that it is stationary. With a
normal distribution, two parameters can be manipulated, the mean and the standard deviation. In this
example, assume the risk is constant as measured by the coefficient of variation CV (CV=sd/mean). The
only unknown variable is the mean — the sample statistic that requires the least amount of data to
estimate.

We test the sensitivity of the pure risk to errors in estimating the mean using a Monte Carlo simulation
of 1,000 draws given a sample size of 30 and an algorithm to develop the pure premium risk from a
normal distribution. For a rainfall insurance contract that pays for losses below 80 percent of the
expected value, the pure premium from the given distribution is 11.5 percent. Running the Monte
Carlo simulation, about 10 percent of the pure premium values are less than 8.5 percent and another
10 percent are greater than 14.9 percent. These are quite large errors in the estimates of the
underlying risk, especially when one recognizes that the only estimate that is allowed to vary is the
expected value and that we assume the index is stationary and normally distributed (i.e., in this case
we perfectly know the true parent distribution) — a rather strong assumption! When the sample size
drops to 20, 10 percent of the pure premium values are less than 7.9 percent and 10 percent are above
15.7 percent.

Regarding the second principle, data requirements are much higher to ensure that the index
insurance indemnities are highly correlated with the losses of the insured. Practitioners need
several types of data from the same time period. The data needed, particularly data on the
specific risk exposure and losses of individuals in the target market (e.g., households or firms),
are unavailable in many developing countries. Because of data constraints, practitioners will
typically have to rely on alternative methods to assess how indemnities relate to losses for the
insured. In the next chapter, we describe these alternative methods. Here, we discuss how
practitioners would accomplish this, if they had sufficient data, pointing along the way to the
types of challenges practitioners are likely to face in data constrained environments

Practitioners developing index insurance products would like to be able to demonstrate a strong
relationship between the index and the losses of the insured. To do so, practitioners must work
across three types of data for index insurance: losses of the insured, the cause of loss, and the
index.
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The insured's losses can be conceptualized in many ways: losses in income or consumption,
reduced profits, yield losses, asset losses, etc.

The cause of loss is the specific natural phenomenon (typically, a weather risk such as drought)
that causes losses for the insured during a particular period of time. The index insurance
product is designed to provide protection against the financial losses caused by this natural
phenomenon.?

The index is a measure on which the index insurance indemnities are based. It is defined by a
number of specific characteristics such as: what is being measured, how it is being measured,
where it is being measured, and over what period of time.

Each of these variables (loss, cause of loss, and the index) has a probability distribution. Ideally,
a practitioner would like to have sufficient data to accurately estimate these three probability
distributions. Additionally, practitioners need data on each variable to have been collected
during the same time period to estimate relationships between the variables. In particular, one
would like to understand the relationships between these variables when an extreme event
occurs. Practitioners want to identify the relationship between losses and the cause of loss (e.g.,
low rainfall). We write this as losses € > cause of loss, for shorthand. Also, with index
insurance, the index is an approximation for the cause of loss for the insured so practitioners
also want to identify the relationship between the cause of loss and the index (cause of loss
<> index). For example, rainfall at the closest weather station may differ from the rainfall a
household experiences on its farm.

As an example of these three variables, consider our experience in Peru. We assessed solvency
risks to rural lenders in Peru, and our analyses indicated that regional floods create borrower
default losses, liquidity constraints, and increased operational costs for the lender. Furthermore,
extreme El Nifio events are the primary cause of flooding in the region, and the best
measurement of El Nifio is sea surface temperature (SST). Therefore, we designed an insurance
contract based on SST (the index) that we intend to reduce exposure to catastrophic flood risk
(the cause of loss) as a means to address bank losses. Figure 1 represents the probability
distribution of SST. Because this variable is used as the index, insurers price the risk using this
distribution. For example, if the insurance contract paid when index values were above 24° C,
the insurer would estimate the probability of the event using the area under the curve for
temperature values above 24° C. To design the contract so it is relevant to lenders in the region,
the practitioner would like to know the flood level that is likely to occur for a specific SST and
the losses that lenders are likely to experience given that specific flood level (Appendix A). With
this information, the characteristics of the index insurance product could be tailored to optimize
the protection offered to the insured.

In statistical terms, practitioners are attempting to identify a conditional distribution. A
conditional distribution is the probability distribution of one variable given a specific value of
another variable. For example, we could potentially identify a probability distribution of losses
based on a specific level of flooding. Suppose from Figure 3, that we are interested in the level
of losses experienced by a household or firm for a flood that is 3.0 meters above flood stage.
Figure 3 is a conditional distribution. It shows the distribution of losses given this level of

8 . . . .

It is also possible to construct more complex weather index insurance products that cover losses from
more than one cause of loss. Assuming a single cause of loss simplifies the conceptual presentation
without any loss of generality.
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flooding. The expected level of loss is roughly USD 4,000 for this level of flooding; however,
losses are represented as a distribution because the relationship is not deterministic. A given
flood level will not always generate the same magnitude of loss. Consider this variation around
the mean as error, which we call basis risk. This error occurs because many variables may
influence losses from a specific level of flood (e.g., whether individuals had time to prepare for
impending floods, whether flooding as due to heavy rains or some other factor such as river
overflow). These other variables that influence flooding affect the variance of this distribution —
how precisely flooding can be used to identify losses. Thus, the closer the distribution is around
the mean of the distribution, the lower the basis risk.

Figure 3 Hypothetical Probability Distribution of Losses Given Flooding of 3.0 Meters

3.0% +

2.5% 4

2.0% +

1.5% ~

Probability

1.0% -

0.5% 4

OO% T T T T T
0 1,500 3,000 4,500 6,000 7,500
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Source: Authors

For index insurance, practitioners want to estimate the conditional distribution of losses for a
specific value of the index — i.e., given a specific value of the index (e.g., SST) what are the
losses experienced by the insured. Practitioners can then design the insurance contract based
on the expected value of losses for any given value of the index. The conditional distribution will
include the errors associated with the ability of the index (SST) to estimate the cause of loss
(flooding) and the errors associated with the ability of the cause of loss to predict losses of the
insured (borrower default rates).

In practice, data limitations create two major challenges with this framework. First, the
conditional distribution of losses given a specific index value is somewhat unique to each
individual. Index € - cause of loss changes depending on the physical location of the individual
(e.g., how close a household farm is to the weather station used as the data source for the
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index). Also, cause of loss €-> losses is affected by differences in factors such as business or
livelihood activities and risk mitigation strategies. For example, some business or livelihood
activities may be less prone to losses from flooding and some insureds may have invested in
levies or elevated buildings to reduce their exposure to flooding. This is especially likely with
household products because each household farms different soils, uses different inputs, plants
different crops, manages different livelihood portfolios, etc.

Second, practitioners will not have sufficient data to properly estimate the distributions and
conduct these analyses. As Boxes 4 and 5 illustrate, many data are needed to accurately
estimate the moments of a probability distribution. However, cause-of-loss data for individual
insureds are generally not available at all. Some individual loss data may be available for a
sample of potential insureds but these data are unlikely to include enough observations to allow
for accurate estimation of probability distributions. Furthermore, to develop a conditional
distribution of losses for a specific index value, practitioners need several observations of losses
for each level of the index. Because the insurance products of interest here are designed for low
frequency, high severity events — the types of events that tend to occur no more frequently
than say 1 in 15 years — even data for the index may, at best, tend to include only one or two
high-severity events.

So, in reality, practitioners can typically only estimate the probability distribution of the index
(and, as will be discussed later, it is often not easy to identify a variable with sufficient data to
serve as the index). Because there are insufficient data, it is generally not possible to statistically
estimate the relationships between the index, the cause-of-loss magnitude experienced by the
insured, and the losses experienced by the insured. Instead, practitioners will typically make
inferences based on qualitative sources and limited amounts of available quantitative data.

Before we proceed with describing how contract design would be approached in practice, it is
essential to examine in more detail the concept of basis risk that was briefly introduced earlier.
Basis risk is the foremost limitation of index insurance; therefore practitioners want to estimate
and minimize basis risk to the extent that is practically feasible. If access to data were not an
issue, practitioners would learn about the sources and magnitude of basis risk by examining the
relationship between the probability distributions of the index, the cause-of-loss, and loss.
However, as noted earlier, these statistical analyses may not be feasible in a real-world setting
and practitioners will generally have to rely on qualitative information to estimate basis risk.

1.6  Basis Risk

In an insurance context, basis is the difference between the loss incurred by the insured and the
indemnity received. Basis can occur due to factors such as contract characteristics (e.g.,
deductibles or co-payments) or errors that occur in the process of establishing the sum insured
or in conducting loss assessment. If basis is relatively small and predictable, as would be the
case with a modest deductible, it is generally not a major concern for an insurance purchaser.

Variability in basis, or basis risk, on the other hand, can be a major concern and is the primary
limitation of index insurance. Basis risk creates the possibility that indemnities will not be highly
correlated with the losses of the insured. As described above, a source of basis risk is the
imperfect relationships between the index, the cause of loss, and the loss. Consider the
insurance product equation that is described in Section 1.5.1. If the indemnity g,/ is not highly
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positively correlated with yield losses YL; and/or asset losses AL, , insurance purchasing will not
reduce the variability in ending wealth.’

Basis risk describes the precision with which the index can be used to estimate losses of the
insured. It can be represented in part by the variance of the conditional distribution of losses
given a specific value of the index. Because data are insufficient to capture the conditional
distributions described above, practitioners have used correlations (or covariances) between
losses and the index to estimate basis risk.

Miranda (1991) demonstrated how basis risk affects the efficacy of index insurance by using a
modified version of the Sharpe-Lintner Capital Asset Pricing Model, or CAPM (Sharpe, 1964) — a
model that is widely used in finance to describe the relationship between returns for a given
asset (e.g., a stock) and returns for the aggregate market (e.g., the Standard and Poor’s 500
Index). Specifically, Miranda describes the relationship between yield outcomes on a given farm
and a spatially aggregated regional yield as

(vie —E(y;))=8,(r; —E(V))+ &5
where y is farm-level yield, Y is the regional yield, i represents different farms, t represents

different crop years, and E is the expectations operator. The parameter 8, shows how the ith

farm’s yield deviations from their expected value vary with regional yield deviations from their
expected value and is defined formally as

g — cov(yie,Ye)
var(Yt)

The error term ¢, captures that part of the ith farm’s yield deviations from expectation that are
not explained by regional yield deviations from expectation. By assumption E(s,-t): 0and
cov(e,t,Yt)z 0.

Thus, Miranda’s model decomposes farm-level yield deviations from expectation, (y;,, —E(y;)),
into a spatially covariate component, 6; (Yt - E(Y)), and an idiosyncratic component ¢, . Miranda
used this model to demonstrate that for a specific farm i, the efficacy of an area yield index
insurance would depend on the farm’s 6;, which, in turn, depends on the covariance of the farm
yield and the regional yield. The higher (lower) the covariance between the farm and regional
yield, the higher (lower) the value for 8; and thus, the more (less) that an area yield insurance

policy would protect against farm-level yield losses. Said differently, the higher (lower) the value
for 8;, the lower (higher) the basis risk.

Miranda’s model can easily be extended to other types of index insurance. Instead of regional
yields, the deviations on the right-hand side of the model could be for a weather variable or a
combination of weather variables. Likewise, the deviations on the left-hand side of the equation
need not be limited to yields. Instead they could reflect deviations in gross or net revenue from

? Loss-based insurance products may also entail basis risk due to errors in estimating expected values (or
sum insured) and losses (Barnett et al., 2005). Additionally, other financial contracts used to manage risk
such as commodity futures also have basis risk. Nevertheless, the value of these risk management
mechanisms even in the presence of basis risk is well-demonstrated in the literature and also applies to
index insurance. Therefore, our discussion focuses on methods used to conceptualize, estimate, and
manage basis risk that occurs with index insurance.
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a number of different livelihood strategies or they could reflect deviations in net worth.
Regardless of the index used on the right-hand side or the losses used on the left-hand side, §;

is a simple and convenient measure of the extent to which deviations in the index explain losses.
The higher (lower) the covariance between the index and the losses, the lower (higher) the basis
risk associated with the index insurance product.

To better understand the primary sources of basis risk and relate these to product design, it is
helpful to break down the covariance between the index and losses into two main components:
1) the covariance between the cause of loss and the loss; and 2) the covariance between the
index and the cause of loss. With regard to the first component, if a specific cause of loss (e.g.,
flooding) is responsible for most of the realized losses and a relatively predictable relationship
exists between the measure of the cause of loss (e.g., severity of flooding) and realized losses
then the covariance between the cause of loss and losses is likely to be high. If many different
causes of loss can generate large losses or if the relationship between a specific cause of loss
and realized losses is highly random, then the covariance between any specific cause of loss and
realized losses is likely to be low. This covariance between the cause of loss and loss likely differs
across individuals.

With regard to the second component, the covariance between the index and the cause of loss
is affected by various factors. For example, deficit rainfall on the farm of an insured household
(a cause of loss) is likely not perfectly covariate with deficit rainfall measured at the closest
weather station (an index). Flooding in northern Peru (a cause of loss) may occur for reasons
other than El Nifio cycles as reflected in SST (an index).

A limitation of using covariances is that these estimates describe the relationship of two
variables across all values of each variable. The 8, above is the same as a coefficientin a

regression analysis. In the regression context, we would interpret the value of 8; as “on average

a one unit increase in the independent variable will cause an X unit increase in the dependent
variable.” Thus, the 8; value describes the general relationship between the index and losses. As

we described in the opening paragraphs of the introduction, insurers are specifically concerned
with the relationship of these variables in the tails of the distribution, which may differ from the
general relationship between these variables. These differences may be a result of underlying
physical processes. Consider a crop growth example. When rainfall is around the optimal level
for a crop, many other important factors affect crop yields (e.g., soil quality, fertilizer use,
pesticide use, etc.); therefore, around this level, the correlation between rainfall and crop yields
would likely not be very strong. When rainfall is extremely low, however, the relationship
between rainfall and yields is expressed more strongly. At low levels of rainfall, other variables
such as fertilizer use have very little effect on yields. Therefore, statistical methods for
estimating basis risk are needed that go beyond simple covariances. Appendix B, developed by
Miranda, provides this methodology. In brief, Miranda proposes estimating these relationships
using copulas, which is a statistical technique that can be used to compare covariances in the
tails of the distributions.

Basis risk cannot be completely eliminated from index insurance but careful product design can
reduce basis risk. Additionally, proper marketing of index insurance in light of its limitations is
critically important to reduce misunderstandings in the target market about basis risk. In
Chapter 2, we describe the risk assessment process for developing index insurance. The risk
assessment chapter serves as a reality check to the academic discussion above. As will be clear,
this estimation of distributions and the statistical relationships between distributions is only
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possible in a qualitative way in many lower income countries. However, before moving to the
discussion on risk assessment it is useful to review two important efforts that are sometimes
made to reduce basis risk. First, when practitioners have yield and weather data, they can work
extensively to fit models that will provide the best fit as a way to reduce basis risk. As is
developed below, working with limited data can result in overfitting models that explain the in-
sample farm-yield data. Second, when developers do not have yield data, there have been
attempts to use plant growth simulation models with local weather data as a means for
compensating for the lack of data. While this is also a good practice in principle, it can lead to
wrong conclusions about the quality of the weather index insurance product for protecting farm
yields if the limitations of this approach are not kept in mind.

1.6.1 Fitting Models with Limited Data to Reduce Basis Risk

As indicated earlier, index insurance products are designed around some perception of how the
index relates to losses. If loss data are available, practitioners may utilize statistical techniques
such as regression analysis to better understand the relationship between weather variables
and losses.

Practitioners have sometimes developed very complex statistical models of the relationship
between various weather variables and crop yields within the available data. They then use
these models to create insurance product designs. Practitioners feel more comfortable if the
underlying index for the index insurance product is based on a statistical model that explains
much of the variability in losses.

The problem is that more complex models tend to overfit the in-sample data. In other words,
while complex models will generally fit the in-sample loss data better than simpler, more
parsimonious, ones, simpler models will often perform better in predicting out of sample
events. If an index insurance product is created using the parameters of a complex statistical
model, it is likely that out of sample indemnities will not match losses as well as the model
would suggest. The complex, overfit, model will underestimate the basis risk, giving
practitioners a false sense of confidence in the index insurance product. As a result practitioners
are likely to “oversell” the benefits of the insurance so that insureds believe that they are much
better protected than they actually are.

1.6.1.1 PRODUCT DESIGNS WITH SPECIFIC TEMPORAL CHARACTERISTICS

Some practitioners have also designed their models using quite specific, discrete time intervals
to determine indemnities. For example, index insurance products have been designed using a
dekadal (10-day) rainfall measurement as the basis of indemnities. These measurements
provide a specific probability distribution across the growing season with which one can
estimate the pure risk of the contract. The difficulty with these estimates is if the dekadal
intervals are started two days later, remarkably different indemnities may occur in the historical
data.' In other words, this is just another example of in-sample overfitting. Such a contract
lacks external validity and increases basis risk relative to a simpler contract.

1.6.2 Using Crop Growth Simulation Models to Compensate for Missing Yield Data

Practitioners have also used crop growth models to compensate for missing data. If loss data are
not available, crop growth models have been used to simulate the relationship between various

1% This finding was shared with our team by professionals from an international reinsurer.
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inputs (including weather variables) and yields for specific crop varieties and regions. For
example, practitioners have used these models to estimate the effects of low rainfall values on
crop yields. They then use this information to design the indemnity structure for an index
insurance contract.

Various data sources are used to construct crop growth models. Data on weather variables are
often collected by creating a test plot at or near a weather station. Crops are planted in this test
plot and their growth is observed by researchers. Each year, the researchers try to control
certain inputs (e.g., soil quality, fertilization, pesticide applications, etc.) and observe the
relationship between the uncontrolled variables (e.g., rainfall, temperature, and sunlight) and
yields. Over the years, they obtain observations that can be used to estimate how different
combinations of inputs, including weather variables, affect yields.

A major concern about building index insurance products around relationships inherent in crop
growth models is that these models are parameterized for very specific crop varieties and
regions. One cannot simply assume that the parameters contained in the models are
generalizable to other crop varieties, regions, or farming practices.

Another concern is that while crop growth models are quite useful for estimating the effects of a
change in a variable around the central tendency of the distribution, they are much less useful
for predicting the effects of extreme weather events on yields. A crop growth model is, in
essence, a complex regression model that specifies relationships between various inputs
(including weather variables) and yields. Regression coefficients are interpreted based on the
relationship across all values and are most accurate near the mean since most observations
occur around the mean. Regression estimates tend to be least accurate for extreme values
because extreme values occur much less frequently. When there are very few observations of
low yields, the regression will be much less accurate in predicting the relationship. Also, with
few observations of extremely low yields (e.g., a typical model may have one or two cases) it
also becomes quite difficult to isolate the effects of one weather variable versus another.

There is a common theme to our concerns about building weather index insurance by overfitting
available data or relying on exclusively on crop growth models. That theme is the danger of
“overselling” the potential benefits of index insurance. Both models that overfit in-sample and
crop-growth models are likely to underestimate the true basis risk that will occur out of sample.
If index insurance is sold based on unrealistic representations about the true magnitude of basis
risk, practitioners will lose credibility with increasingly frustrated insureds — potentially
undermining any efforts at long-run scalability and sustainability.

1.6.2.1 IMPLICATIONS

In response to problems associated with overfitting and reliance on crop-growth models, some
development economists have questioned the value of index insurance investments citing that
basis risks seems unacceptably high, development costs for these programs are significant, and
opportunities for scalability and sustainability are minimal — especially given the complicated
statistical approaches of some practitioners. However, the problem is not index insurance. Index
insurance is built on sound economic principle, and new applications for this class of products
continue to emerge. Generally, problems emerge when practitioners ignore the consequences
of the data limitations by: 1) relying too heavily on a small data sample to provide an accurate
estimation of the underlying probability distributions and the relationships across distributions;
and 2) using scientific models intended to explain physical processes under general conditions to
identify relationships during extreme events.
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Chapter 2 Working under Real-World Constraints: Data, Product
Design, and Risk Assessment

The conceptual model presented in the introduction describes the underlying framework for
index insurance product design. In practice, product design is quite challenging, marked by
uncertainty, and often, qualitatively approximates this theoretical framework. Vast data
constraints in lower income countries limit the techniques available to practitioners. Consider,
for instance, the task of estimating the loss distribution. Historical, quantitative data on losses in
many lower income countries simply do not exist, especially data on household losses. Sparse or
missing quantitative data greatly limit what can be done in estimating probability distributions.
Mapping relationships between imprecise distributions results in more error. Thus, practitioners
are left with insufficient quantitative data to determine how measurements of a weather event
translate into losses for potential insureds.

Index insurance developers rely heavily on what little information may be available and employ
several approaches to overcome these data constraints. In this chapter, we describe an
approach that we believe is most likely to create products that are in line with the priorities of
the target market.

The basic requirements for an index insurance product are 1) an index that is highly correlated
with the insured risk; 2) historical data on the index to establish the pure risk being insured; and
3) some indication of how the index relates to the consequential losses and costs of the
potential insureds in the target market. The index must be based on a secure and objective data
source because indemnities are based on this measure. Accurate premium rating requires
sufficient historical data to estimate the probability distribution of the index. The first two items
in the list above are discussed further in Chapter 3. The focus of this chapter is on the third item
— determining how the index relates to losses given that limited quantitative data in many
lower income countries make it particularly challenging to estimate this relationship statistically.

The dearth of loss data in lower income countries leads to the question of how to begin product
design. Because weather index insurance bases indemnities on the measure of a weather event,
an appropriate starting point is identifying what weather risks are of greatest concern in the
region. This approach focuses on the types of risks that can be insured with weather index
insurance. It also allows for the possibility that the weather risk causes more than one type of
loss. Thus when developing weather index insurance, the following is the logical sequence of
questions:

1. What weather risk (cause of loss) causes the greatest/most disruptive losses?

2. What losses are associated with this weather risk? What risks should the insurance
target? and

3. How well can the causes of loss for different insureds in the target market be
approximated with a generalizable weather index?

To address these questions the practitioner utilizes any available quantitative data but must also
usually rely on qualitative data collected from local stakeholders through risk assessment.
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2.1  Risk Assessment

As a critical step of product design, we recommend a risk assessment process that is informed
by scientific inquiry into weather risk in the region and enhanced by local knowledge collected
through focus groups or other interview techniques to supplement any available quantitative
data. Scientists with specialized knowledge of the region provide an invaluable starting point for
practitioners. The findings of these researchers may be particularly important for identifying a
suitable index, targeting vulnerable populations, and guiding focus groups. Local stakeholders
who have lived through previous extreme events tend to have a clear picture of how households
and businesses in the region have been affected and often have assessments regarding how
vulnerable their community is to future catastrophic events.

Risk assessment identifies the major risks affecting households and businesses and
systematically develops a model for understanding the risk. The risk assessment process
operates under the recognition that weather risk and resulting losses occur in a larger system
affected by many components: household livelihood strategies, geography, weather patterns,
population dynamics, industry growth, cultural values, etc. Risk assessment attempts to
estimate the cost of a specific risk in this context. The process includes assessing how
households and businesses currently “pay” for this risk. Households pay directly when a
catastrophic risk event causes yield, revenue, or asset losses or increased costs; however,
households also pay indirectly for catastrophic risk by foregoing business opportunities because
the risks are too high. For example, a bank may ration lending in a region exposed to flood risk,
or a household may avoid higher-risk, higher-return production strategies because it deems
drought risk too great. Often, weather events result in many concurrent consequences. For
example in Vietnam, when coffee farmers in the Central Highlands are exposed to drought, they
suffer losses in yield and quality, increased irrigation costs, and the death of coffee trees.

Risk assessments identify where existing risk management strategies are ineffective and/or
inefficient for catastrophic risk, and where index insurance might be appropriate. As
practitioners develop an understanding of risk in the local context, themes are likely to emerge
that guide priorities in product development. For example, risk assessments will identify critical
periods in which the target market is most vulnerable to specific weather risks. In our work in
Vietnam we learned that rice farmers in the Mekong Delta are particularly vulnerable to
flooding during the June and July rice harvest. An index insurance product was designed for
lenders in the region based around a two-week critical window early in this harvest period (see
Chapter 3 in GlobalAgRisk, 2009).

Another common theme that arises during risk assessments is the impact of catastrophic events
on risk aggregators. Risk aggregating firms (e.g., banks, agricultural input suppliers, output
processors, etc.) are exposed to the disaster risks of the communities they serve. As a result,
catastrophic risk exposure can limit the role of these firms in the region and limit access to their
services (Skees and Barnett, 2006). For example, a theme that emerged for our team during risk
assessments in northern Peru is that, despite significant growth in financial services in the
region, El Nifo significantly limits access to credit for agricultural borrowers.

Risk assessment is likely to begin an ongoing process of product development with the target
market. Practitioners can return to focus groups to assess the feasibility of using a specific
weather index as the basis for the insurance. For example, the target market may not trust data
collected by the national meteorological association, or they may not be willing to pay for an
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insurance product that makes payments based on satellite data such as NDVI. An important
consideration regarding the index is potential insureds’ perceptions of the basis risk. The target
market can also be consulted regarding how they might use the proposed insurance product,
which can have important implications for design and delivery. For example, index insurance
products targeted to households in Malawi have been designed to protect against events (low
rainfall) that create losses on the principal of an agricultural loan; in India, to protect household
income from losses occurring to a specific crop; and in Mongolia, to protect household
livelihood assets, such as livestock (Hellmuth et. al., 2009).

In this fashion, local knowledge can be used to partially overcome the data constraints that exist
in many lower income countries. Index insurance is designed using qualitative data regarding
how the index maps onto losses for the target market. While the practitioner may be unable to
fully validate this aspect of the index insurance design with quantitative data, the process of
developing the index insurance with local stakeholders increases the relevance of this product
for the target market and reduces the likelihood of significant misunderstandings about the
purpose of the index insurance.

Given all the challenges to stakeholders revealed in the risk assessment, practitioners must
decide whether scarce funds should be used to develop index insurance or used to address
other development priorities. In our experience, there are many positive externalities of index
insurance market development beyond the development of a specific insurance product. The
market development process can improve the risk management strategies of households, firms,
and governments through education; strengthen legal and regulatory institutions to facilitate
broader insurance market development; develop capacity among local partners such as insurers
and banks; and advance other economic development efforts through the findings of risk
assessments. Still, in some situations where weather risks are not severe, funds are likely better
spent elsewhere. Also, if conditions are not amenable to index insurance (e.g., if data systems
are severely underdeveloped), other investments are likely better. Thus, the opportunity cost
should certainly be considered before practitioners pursue index insurance product
development efforts — especially if significant infrastructure investments would be required to
facilitate offering index insurance.
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Chapter 3 Data Needs for Indexes

To estimate the loss distribution of the insured and to determine how losses tend to relate to
the cause of loss (the weather risk), practitioners supplement available quantitative data with
risk assessments conducted through focus groups and consultation with local experts, as
described in Chapter 2. However, to actually develop an index insurance product, sufficient
guantitative data are required to: 1) develop the price of the insurance based on the expected
frequency and magnitude of indemnities; and 2) serve as the index for calculating the insurance
payout.

It is necessary to review the desired attributes of data systems and place them within the
context of challenges facing practitioners in the field. Data requirements for estimating the pure
risk and calculating insurance payouts are contextual, in that they are influenced by the
characteristics of the weather event and the physical environment in which the event occurs. In
particular, data needs are largely determined by the spatial and temporal presentations
(patterns) of the weather risk. Different weather risks tend to follow different spatial and
temporal patterns that vary by region. These patterns have a direct influence on data
measurement needs.

3.1 Data Needs Are Influenced by the Weather Risk

Data needs for both estimating the pure risk and for settlement of the insurance are largely
influenced by the characteristics of the weather risk itself. The spatial and temporal
presentations of the weather risk are the most salient features. Spatially, it is important to
understand how large an area an extreme weather event tends to influence as this will
determine how geographically precise data measurements must be. A basic precondition for
index insurance is that the weather event must result in correlated losses; therefore, some
spatial correlation must exist for any weather event suitable for index insurance. Still, these
patterns may differ by type of weather event and by region. Excess rainfall will usually present a
different spatial pattern than drought. Topography is an important determinant of the spatial
presentation of a weather risk. For example, flood risk of an area can depend on its elevation
relative to a flood risk source, such as a river, but also on the aspect and slope of the land such
that heavy rainfall can produce inundation. Mountains alter weather patterns over short
distances or generate microclimates. Such regions are often poorly suited for index insurance
because the spatial correlations of weather events are so low.

Weather risks tend to follow temporal patterns as well. In some regions, daily rainfall in the
afternoon is common; in others, it rains for most of the day every few days; and in others,
several days or weeks of sustained rainfall are followed by prolonged periods of no rain.
Seasonal patterns also occur throughout the world. Some regions near the Indian Ocean receive
almost all their rainfall during the monsoon season from roughly June to September. August is
considered the start of the hurricane season in the Caribbean. Finally, interannual patterns also
occur. The Sahel, a region in Africa south of the Sahara, experiences multi-decade cycles of
drought. El Nifio also follows an interannual pattern in that atmospheric conditions make it
unlikely for two extreme events to occur in consecutive years. In conclusion, identifying
appropriate data systems for index insurance requires careful consideration of the many
contextual influences to the presentation of weather events.
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3.2  Estimating the Pure Risk

To price insurance sustainably, practitioners must accurately estimate the expected value of the
payouts, also called the pure risk or pure premium, of an insurance policy. To do this,
practitioners first fit a probability distribution to the historical weather data during the cover
period, which describes the likely frequency and severity of the event in probability terms. The
probability distribution can sometimes be estimated using a known distribution, such as a
Gaussian, or by using kernel smoothing procedures of the empirical distribution of the weather
observations. The pure risk is found by integrating the probability distribution times the payout
rate determined by the contract thresholds and finally multiplied by the sum insured. Thus, the
pure risk is a function of the distribution of the weather event during the period of interest, the
thresholds and limits of the index where payments begin and end, and the total amount of
coverage desired. The payment structure may take any form but is most frequently a linear
function of the index. Figure 4 shows the probability distribution for a hypothetical index
insurance contract. For example, Figure 4 could be the estimated probability distribution of
rainfall at a specific weather station with the index insurance designed to protect against excess
rain above the predetermined threshold of 18. The shaded area for values greater than or equal
to 18 represents the expected value of the index insurance. In calculus, the area is integrated to
take the value of the area relative to the entire area under the pdf. The expected value is also
referred to as the pure risk.

Figure 4 The Pure Risk of a Hypothetical Index Insurance Contract
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When estimating the probability distribution, practitioners must also assess the historical data
for trends and other systematic changes in the data over time. Figure 5 shows historical average
rainfall for June, July, and August in the Sahel and is a dramatic example of trends in weather
data, as average rainfall changes significantly over the time series. Data for June, July, and
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August are used because of the importance of these months in this region for agricultural
production. These data were collected from the rain gauges mapped in Figure 6. Practitioners
are particularly worried about trends that are likely to increase the pure risk (see Box 5, which
describes how these trends can affect the pure risk).

Trends in the data are a signal that the underlying probability distribution is non-stationary (i.e.,
the risks are changing). As a result, the probability distribution developed from the historical
data must be adjusted based on this trend. How practitioners adjust the probability distribution
relies heavily on their perceptions of the underlying physical process that is causing the change
in weather risk. For example, practitioners may assume a stronger, more permanent trend if
they believe the changes are due to climate change than if they believed the changes were
largely due to multi-year cycles (as in the case of the Sahel).

Figure 5 Sahel Rainfall for June, July, and August, 1900—-2006
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Figure 6 Location of Rain Gauges Used in the Sahel Dataset
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Box 5 Potential for Misestimating the Pure Risk: A Sahel Example*

This case illustrates the potential consequences of misestimating the underlying probability
distribution of a weather risk. It also demonstrates that probability distributions are heavily
conditioned on a snapshot in time. The historical data used at that point in time can significantly
misrepresent the current or future weather risk.

Consider the case of a practitioner developing an index insurance product for drought with an
indemnity triggered at 425 mm. For levels of rainfall below 425 mm, indemnities increase in a linear
fashion until 200 mm, below which the insured receive 100 percent of the sum insured. Suppose that
the practitioner was designing such a contract in 1962, using the 1900—1961 Sahel data shown in Figure
5. Assume that the practitioner does not expect any trends in the risk. The green, dashed probability
distribution in Figure 7 is based on this historical data (for simplicity we use a normal distribution for
this illustration). For the contract described above, the pure risk would be 2 percent. The actual rainfall
experience in the Sahel was much different in the following 26 years. While the variance of rainfall did
not change, the average level of rainfall fell significantly. A probability distribution using data only from
1962-1989 (the blue, solid distribution in Figure 7) would estimate a 44 percent pure risk for this
insurance contract. Insurance is neither an efficient nor sustainable solution for managing such a large
portion of the insured’s risk. From 1962 onward, insurers would incorporate the new rainfall
experience each year and adjust the pure risk for trend. Given how different the estimate of pure risk is
from the actual risk experienced during the following 26 years, whatever adjustments the insurer made
would likely be insufficient and the insurer would continue to lose money until it decided to stop
offering the product.

*See Collier, Skees, and Barnett, 2009 for more details of this example.
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Figure 7 Comparing Rainfall Distributions and Indemnities, Created Using the Vantage
Points of 1962 and 1990
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Source: Collier, Skees, and Barnett, 2009; The figure is based on data provided by International Research Institute
for Climate and Society, Columbia University.

Practitioners also examine the data for clustering. Clustering describes the tendency of some
catastrophic events to occur in a temporal pattern. For example, in some regions it may be that
if drought occurs in one year, it is more likely to occur in the next year as well. If such
interannual cycles occur, individuals will use this information when making the decision to
purchase insurance, which creates an adverse selection problem for insurers. In some cases,
insurers can adjust for this by offering multi-year contracts or by pricing the insurance assuming
that individuals will use these signals in making a purchase decision. Both of these alternatives
can cripple the insurance market: multi-year contracts require long-term commitments that may
discourage potential buyers while pricing the insurance based on the assumption that people
will only buy when the risk is high will increase the price of the insurance, also reducing
insurance purchasing.

In assessing the pure risk, it is best to consider an estimated distribution as a snapshot at a
particular point in time. The following year, new observations will emerge and may change the
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distribution. Practitioners are in the difficult position of interpreting the implications of new
observations. Emerging trends are particularly difficult to identify. For example, if two extreme
events occur in consecutive periods, it may be an unusual sequence of events, or it may indicate
a new regime for the weather risk. Practitioners can adjust the price of the insurance each year
based on new experiences. Still, such uncertainty often leads insurers to add an ambiguity load
to the cost of insurance to protect against the possibility that they have misestimated the pure
risk due to misestimating the moments of the distribution or clustering. In the next chapter, we
describe some of the key characteristics for choosing a data source to estimate the pure risk.

3.2.1 Key Characteristics for Estimating the Pure Risk

Five characteristics of the data source help practitioners evaluate if it is suitable for estimating
the pure risk: 1) historical length; 2) spatial specificity; 3) temporal specificity; 4) completeness;
and 5) validity.

Historical Length. The length of time series determines how well the distribution can be
estimated. A general benchmark for index insurance has been at least 30 years of data. While
this standard is somewhat arbitrary, it has some implications for understanding the distribution
of a weather variable (Box 2 in Chapter 1).

A growing number of alternative data systems have emerged to replace or supplement data of
short time series. Some forms of satellite-based data, such as NDVI, were developed in the late
1970s and early 1980s and so have generated a length of time series data that may be suitable
for estimating distributions. Reanalysis data (a term used to describe products that combine
weather data from many sources) are often used to supplement short time series of weather
station data. Chapter 4 contains more detailed descriptions of some of these alternative data
sources.

Spatial Specificity. Spatial specificity describes the level of detail with which the data system can
assess the weather risk in the region. As discussed above, spatial requirements for the weather
risk depend on the spatial correlation of the event. For data sources on the ground such as
weather stations, spatial specificity refers to the distance between weather stations. For
satellite-based data, spatial specificity is the level of resolution of the index. For example, NDVI
is often measured using pixels representing areas of approximately 1 km” (Box 8 in Chapter 4).

Temporal Specificity. Temporal specificity, the frequency with which a data system records
measurements, has important implications for estimating some weather events and for
mapping the index on to losses. The temporal specificity of some data systems may be
inadequate to capture certain weather risks. For example, potential insureds in the target
market may report sudden extreme rainfall that causes flash flooding within a few hours. There
may be weather stations in the region but if the data are only collected on a weekly or 10-day
basis, they will lack the temporal specificity needed to identify sudden extreme rainfall.

Completeness. Missing values in a data series can occur for many reasons — civil unrest, loss of
funding for meteorological services, human error, etc. Missing values can be estimated using
statistical methods such as interpolation or using other data sources. Sometimes data are
missing due to a catastrophic event (e.g., a flood washes away a weather station). Dealing with
missing data in these cases is problematic. Observations of extreme events are very important
for estimating the tail of the probability distribution and the statistical methods used to replace
missing values tend to underestimate extreme values.
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Validity. Having trust in the validity of data is important for both practitioners and target users.
Ideally, historic data would have been collected by an institution that is not likely to be
pressured into altering data values. Typically, national meteorological associations can fulfill this
role sufficiently, but sometimes the target market may prefer an alternative data source.

Practitioners must also consider possible effects of changing technology on data values. For
example, new rain gauges may provide data more regularly and more accurately than older
technology. Likewise, many of the satellite-based technologies are regularly updated and care
must be taken to ensure the data used throughout the time series are consistent.

3.2.2 Supply Priorities

Practitioners working to supply index insurance are concerned that historic data provide an
accurate estimation of the pure risk. They are particularly concerned with the possibility of
underpricing the risk which can create large losses. As a result, reinsurers typically add
ambiguity loads to premiums when limited data increase the likelihood that the pure risk will be
estimated incorrectly. In some cases, practitioners may decide the potential for misestimating
the pure risk is so great that they are unwilling to offer index insurance.

3.2.3 Demand Priorities

While the target market may not be exposed to the methods used to price the pure risk, it is in
the interest of the target market for the data to be a long and accurate time series. When
practitioners can confidently price the pure risk, premium loads will be lower, reducing the cost
of the insurance product to potential insureds.

3.3 Settlement Index

The index used to settle the insurance payment is the core element of index insurance. It is the
contractually binding mechanism used to determine insurance payments. It is also the index
that the insured must evaluate when deciding whether to purchase the insurance. Therefore,
insurers want to choose this index carefully. In many cases this index will be based on the same
data source that is used to estimate the pure risk, such as if weather station data are used for
premium rating and as the index for indemnities. But this need not always be the case. For
example, the index used for settlement of payments may be based on a relatively new weather
station while the pure risk has been estimated using longer series of historical data from
surrounding weather stations.

3.3.1 Key Considerations for the Index

Following are some of the key characteristics that help practitioners evaluate if a data source is
suitable to serve as the index.

Relationship between the Pure Risk Estimate and the Index. Given the importance of
accurately pricing the pure risk, it is crucial that practitioners understand the relationship
between the data source(s) used for estimating the pure risk and the index used for loss
adjustment.'! This is especially important for extreme values.

"|f the index used for loss adjustment is the same as the index used for calculating indemnities, no action
is needed in this regard.
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Spatial Specificity. Spatial specificity has significant implications for basis risk, and is probably
the biggest constraint to index insurance scalability. The two most prominent index insurance
programs that rely on weather stations, India and Malawi, have both been constrained by
insufficient weather station infrastructure. Many regions of the world, especially much of Africa,
have even less developed weather station infrastructures.

Temporal Specificity. Many regions may also be constrained by weather stations that report
data too infrequently (e.g., biweekly or monthly) to be useful for many weather risks. It is worth
repeating that the spatial and temporal specificity demands on an index depend specifically on
the spatial and temporal presentation of the weather event and the type of contract designed.

Validity/Security/Credibility. Both the target market and the suppliers of index insurance must
rely on the index used for loss adjustment. Potential insureds are not likely to buy the insurance
if they do not trust the validity and objectivity of the data source on which the index is based.
This can occur because potential insureds do not understand the data source. It may also be
that potential insureds understand the data source but believe that the data may be
manipulated for political or other purposes.

It is also important to note that basing indemnities for an insurance product on a particular data
source may create new threats to the security of the data source. Obviously this is a bigger
concern with weather station data sources than it would be with satellite-based data sources.
Regardless, threats to the security of the index should be anticipated and addressed proactively.

Completeness/Permanence. Practitioners want to choose an index that is certain to be
available for the upcoming season. For example, if an insurance product uses rainfall gauges
managed by a national meteorological institution as the index and the national government
reduces funding for data collection and maintenance, the credibility of the index insurance
program is challenged. Additionally, practitioners commit substantial resources to designing a
product so they typically want to use an index that is likely to be available for many years into
the future.

3.3.2 Demand Priorities

The core concern of the target market evaluating the product is how well it is likely to insure
their risk. Basis risk is a major component of the consideration, but as we have described, basis
risk is a complex issue. Many researchers have estimated basis risk in terms of household-level
weather and crop-yield correlations. Obviously this is not an appropriate measure of basis risk
for a risk aggregator product. But we would argue that it is also not necessarily an appropriate
measure for a household product. Our experience has demonstrated that extreme weather
events affect stakeholders in many ways. Because of the diversity of risk management strategies
of households in rural areas, it is not convincing that weather/yield correlations adequately
capture the ground-level consequences of a catastrophe. Farmers may save their yields but lose
quality, or they may irrigate at substantial cost. No researcher or practitioner can hope to
identify the effects of all of these management and coping strategies, especially for
heterogeneous households.

Potential insureds consider the effects of extreme weather events on a variety of factors
including the long-term health, safety, and well-being of family members. In short, they evaluate
an insurance product simply in terms of whether or not they are likely to be better off having
purchased the product. This process may be a complex evaluation of their risk exposure and any
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alternative risk management strategies, and can also include the recognition that, in many
cases, an imperfect insurance instrument can be better than no insurance at all.

Credibility of the index is also a concern of the target market. We have already mentioned the
possibility that potential insureds may not trust data provided by the national meteorological
service. In other cases, they may not be willing to rely on data collected from satellite-based
platforms. Field research in Kenya regarding an index-based livestock insurance (IBLI) pilot using
NDVI has included assessments of potential buyer response to this product. (Chantarat, 2008;
Chantarat et al., 2009). In early 2010, some 2,000 Kenyan herders purchased the IBLI.

3.3.3 Supply Priorities

The primary concern of those supplying index insurance is the validity and security of the data
source as it serves as the basis of the insurance. Practitioners will want to dialogue with
reinsurers during product development to make certain the index of interest is acceptable to the
reinsurer. A second priority is the permanence of the data source. Insurers will not invest in
building a market for an index insurance product unless they are confident that the underlying
data source for loss adjustment is likely to be available into the future.
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Chapter 4 Real-World Data Constraints: Limited Weather Station
Infrastructure and Opportunities for Satellite-based
Technologies

This chapter extends the conceptual framework of Chapter 1 and the real-world focus in
Chapters 2 and 3 to identify some pragmatic implications regarding index insurance product
development. It is divided into two subsections. First, we note that weather stations are
underdeveloped in many regions and describe considerations for evaluating if weather station
infrastructure is sufficient to support an index insurance product. As part of this discussion, we
consider the potential cost of populating a region with weather stations and maintaining this
data system. Second, we evaluate practices of some current index insurance programs. The
findings in each of these subsections motivate our conclusions for advancing weather index
insurance, given the prevalent data limitations.

4.1 Data Availability: Weather Stations

Weather station (or rain gauge'?) data have been the primary data source for weather index
insurance programs thus far. Yet the weather station infrastructure in many regions of the world
is underdeveloped, and may be insufficient to support index insurance products based on
weather station data. The U.S. National Climatic Data Center (NCDC) archives weather station
data as part of the World Meteorological Organization (WMO) World Weather Watch Program
according to WMO Resolution 40 (Cg-X11)." This data source reveals very limited weather station
coverage in some regions of the world, in particular for parts of Africa. For example, for stations
reporting daily values NCDC provides data on 37 stations in South Africa, 12 in Sudan, 4 in
Botswana, and 1 in Congo. Still, the NCDC archives tend to underreport the actual number of
weather stations in some countries. Many reasons may motivate countries to underreport to
international archives. Low data quality from some stations is one. Civil and political unrest and
the very limited budgets of many African countries would contribute to low quality data. But
also countries may prefer not to publicly share all of their weather data. In some cases, country
meteorological offices maintain a policy of charging for data. Thus, from archives such as that
held by the NCDC, it can be quite difficult to estimate what data the country has actually
collected. Another source reports that in Africa, there are roughly 1,000 quality-controlled
weather stations (Funk et al., 2003). If weather stations were uniformly distributed, it would
indicate a weather station density of roughly one weather station every 60,000 km? (Funk et al.,
2003). These weather stations are not uniformly distributed, of course, yet their density and the
NCDC archives are stark indicators of how severe data constraints are in Africa. Moreover, the

12 . . . . . .

A rain gauge is a device used for measuring rainfall and can be much smaller and less expensive than a
weather station. Weather stations may also measure rainfall (through a rain gauge) but may measure
other weather variables as well, such as temperature or wind speed.

3 NCDC maintains at least two sources of data collected from weather stations around the world. Global
Summary of the Day (GSOD) surface data can be accessed at

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/

Global Historical Climatology Network (GHCN) daily data can be accessed at
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/index.php?name=data

These data archives are among the most comprehensive sources of publicly available weather data in the
world.
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existing weather station infrastructure in some regions, such as the Sahel, has deteriorated since
the 1980s due to the costs of data collection and systems upkeep (Ali et al., 2005). For example,
in recent work performed in Mali, we learned that, of some 85 weather stations that were in
service at some level during the time period of 1951 to 2007, only 10 were operational in 2007
(Hartell and Skees, 2009).

Estimates on data that are may be particularly telling for index insurance. Consistent with our
emphases on the reliability and validity of data sources, practitioners should question whether
data that do not meet the following standards are a suitable for supporting an index insurance
product: that the data are quality controlled, reported based on some minimum standards, and
publicly accessible. When the data used to generate the index for an index insurance product
must be purchased, these ongoing costs must be passed on to the insured, and if the data are
not publicly accessible, the insured will not be able to verify the index value unless they too pay
for the data.

4.1.1 Evaluating the Sufficiency of the Weather Station Density

Given that we know the density of weather stations in a region, the logical next question
becomes: is this density of weather stations sufficient to support an index insurance product? Of
course, this is a difficult question and motivates much of the work in this document. It is
ultimately a question of basis risk. Returning to our conceptual model, practitioners are working
with three probability distributions (losses, cause of loss, and the index) and two mapping
functions (losses € > cause of loss and cause of loss €-> the index). Chapter 2 describes how
to qualitatively assess the distribution of losses and its relationship to the cause of loss. .
Chapter 3 discusses considerations for selecting an index — that is, it discusses characteristics of
a data system that would improve the estimation of the probability distribution of the index.
The current question, whether the density of weather stations is sufficient, is a question of the
relationship between the cause of loss and the index data (cause of loss €—> the index).
Specifically, it is a question of how close a geographic point of interest has to be to a weather
station for the weather station to adequately measure the weather phenomenon at the point of
interest. Of course, the answer to this question will depend on the specific weather
phenomenon being measured. We use rainfall to illustrate these principles but other weather
phenomena (e.g., temperatures) are likely more spatially correlated and would thus require less
density of weather stations. Box 6 provides an empirical example for a weather index insurance
pilot in Vietnam.

Box 6 Vietnam: Weather Station Infrastructure and Product Offerings

Our ongoing work in Vietnam provides a good illustration of how the lack of rainfall stations can
influence what is possible in terms of product design. Vietnam generally has a strong infrastructure for
weather stations. Authorities have been particularly diligent about putting weather stations near major
crop production regions. As a centrally planned economy, Vietnam policy makers have influenced
where certain crops are grown. The project focuses on the important Robusta coffee producing region
of Dak Lak Province. Station information and rainfall observations were obtained from eleven weather
stations throughout the coffee growing area. Of these, five stations were selected for the initial pilot
because their available rainfall data were considered adequate to support a drought insurance
product. The insurance is designed to compensate coffee growers for the consequential losses of
severe drought occurring at the beginning of the normal monsoon season.

Concentric circles are drawn around the pilot stations at 5, 10, and 15 kilometer radii. Given the
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contract design and our analysis of the spatial presentation of the risk, the insurable area would ideally
encompass an area no more than 10 kilometers from a weather station in order to minimize basis risk.
However, the resulting “islands” of insurable areas were also considered to be problematic from an
insurance operation standpoint. Consequently, the insurable area is expanded to +/- 15 kilometers
depending on the lay of commune boundaries to develop a single contiguous insurable area.

Insurable Zones in Dak Lak Province
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Note: Hatched area indicates where insurance is feasible in the initial pilot

This area represents some of the densest coffee plantings in the region, approximately one half of the
total area planted. To cope with the possibility of increased basis risk, insured growers in areas that
intersect two stations at the 15 kilometer distance are given the choice of which station to associate
with, based on their knowledge of local weather conditions. In addition, the threshold for payouts is
set at significantly catastrophic levels to help avoid the possibility of payments without loss. This
project demonstrates that, even in a country that has a strong weather observation infrastructure such
as Vietnam, difficulties are frequently encountered due to data quality and density of observation
points that limit insurance possibilities. The project also demonstrates how it is often necessary to find
innovative solutions to technical limitations in order for an insurance to be operationally feasible.

An important area of meteorological research is comparing the accuracy of alternative data
sources in estimating rainfall values. Thus, an important question for this research is how well a
data system (e.g., a grid of weather stations) is likely to predict rainfall values in the region. In
this context, the basis risk associated with differences between the cause of loss and the index is
described as estimation error. Consistent with the theme of this of this document that weather
is context specific — it depends on topography and other factors influencing the spatial and
temporal presentation of a weather event — the meteorological literature identifies many
variables that hinder rainfall estimation. Lebel and Amani (1999) report that the following
factors contribute to this estimation error:
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Size of the area of estimation;

Number of weather stations;

Geometry of how the weather stations are dispersed;

Spatial presentation of rainfall;

Temporal presentation of rainfall (e.g., rainfall accumulation);
Mean rainfall depth;

Type of rainfall;

© N O Uk wWwNR

Meteorological conditions; and

o

Season.

These researchers develop an error function that captures many of these variables (Ali, Lebel,
and Amani, 2005). They use this error function for making comparisons across rainfall data
sources (e.g., weather stations to satellite data sources, Ali et al., 2005). It should be noted that
Ali, Lebel, and Amani (2005) develop the error function to be a general form for comparisons
across regions and data sources; however, their research is in applications in the Sahel and thus
the function may have unforeseen regional influences. As noted above, the presentation of
rainfall can vary greatly across regions of the world, and even across seasons in the same region.
We provide their error function here to illustrate the relationship between this form of basis risk
(error) and these important variables.

¢
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where e is the error, A is the area in km?, Ng is the number of weather stations, K is the

number of rain events during the period of measurement, P; is total rainfall during the period of

measurement, and the C elements are parameters fitted based on local conditions (e.g.,
topography, geometry of the weather station dispersion, etc.).

Many of the relationships in the error function are not surprising but are worth noting. We
consider the marginal effect of each variable — that is, the effect of increasing this variable
holding all other variables constant. First, increasing the area assessed A increases the error
term. The number of rain events and total rainfall are inversely related to error so rainfall
estimations in regions that experience generally few rainfall events and low rainfall tend to have
higher error than rainfall estimations in regions generally experiencing more events and higher
rainfall (Ali, Lebel, and Amani, 2005). Perhaps the most important implications are that the
number of weather stations N, is inversely related to the error term and the error term is

convex in N, % This implies that increasing the number of weather stations decreases the

magnitude of rainfall estimation errors but each additional weather station contributes less and
less to decreasing the magnitude of the error.
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Lebel and Amani (1999) estimate the error associated with using 10-day cumulative rainfall
values for a 100 km by 100 km area with 10 weather stations in the Sahel. If weather stations
are distributed to provide equal coverage across the 10,000 km? area, any point in the area
should be within approximately 18 km of a weather station."® Estimation error tends to be 10 to
15 percent for this scenario. In other words, under these assumptions, the actual 10-day
cumulative rainfall at any point within 18 km of the weather station may differ from the rainfall
measured at the weather station by as much as 10 to 15 percent. Lebel and Amani also note
that weather stations are of much lower density than this for almost all of the Sahel.

4.1.2 Estimated Costs of Populating and Maintaining Weather Stations

What would it cost to increase the density of weather stations on which index insurance could
be based. Instruments for measuring weather phenomena come in a wide range of prices. As an
example, consider that a simple plastic rain gauge can be purchased for as little as USD 5.00
while more advanced automatic weather stations with rain gauges cost between USD 12,000
and USD 15,000.

At a minimum, a basic automatic rain gauge would cost several hundred dollars (US). In
addition, several add-ons would likely be required. Data loggers are not standard equipment on
most automatic rain gauges. Data loggers come with a variety of features that influence the
price. The most simple data loggers, that do not have remote access, cost around USD 130 but
they also require software that costs anywhere from USD 55 to USD 125. To access the data
logger remotely, more complex data loggers are required. These are priced from USD 435 to
USD 1,440. The user may also need to purchase additional software that can cost as much as
USD 600. Remote access to the data logger also requires that the data logger be equipped with
either a landline phone, mobile phone, radio, satellite capability, or some other mechanism for
transmitting data from the data logger to a remote computer.

Automatic rain gauges also require a power source. Some rain gauges are battery powered,
though battery life can be limited to one year. The more advanced gauges are electric or solar-
powered with backup batteries. Solar panels cost around USD 135 for 5 watts, which is enough
to power some rain gauges, but others might require more power and more expensive panels.
Other add-ons include mounting plates and brackets (USD 40-USD 90), wind screens (USD 465),
stands (USD 100-USD 300), calibrators (USD 125), and various types of cables and adapters (USD
100-USD 300).

For most automatic rain gauges, regular maintenance is required to clean out any debris (leaves,
sticks, etc.) from the rain gauge and wipe out mud and dirt. Sensors may need to be replaced on
a regular schedule (e.g., every six months or annually). Regularly scheduled recalibration is also
required. While parts (such as washers and bearings) will occasionally need to be replaced, rain
gauges typically last between 5 and 20 years. The lifespan of a rain gauge depends on the
location; a location with many storms (sandstorms, windstorms, rainstorms, etc.), will wear a
rain gauge more than one with only occasional storms.

Based on this information, it seems that a basic automatic rain gauge with remote access to the
data logger would cost, at a minimum, between USD 1,500 and USD 2,000. A weather

1> Each of the 10 weather stations would cover an area of 1,000 km”. Any point within the 1,000 km” area
of a circle around the weather station should be within approximately 18 km of the weather station;
area = nx radius 2 so if area = 1,000, the radius is 17.84.
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observation station that measures weather phenomena other than just rainfall would cost
significantly more. This estimate does not include the cost of installing the rain gauge, the power
source, the remote access mechanism (e.g., internet or mobile phone), or any security measures
(e.g., fencing). Nor does it include the cost of shipping the equipment and materials to the site.
Also not included are the recurring costs for routine maintenance. These recurring costs can be
quite significant. Many lower income countries have weather stations that have been
abandoned because of an inability to pay for the recurring costs of maintenance and upkeep.

So, what quality of rain gauge is required to support an index insurance offer? For example,
would all the rain gauges used for index insurance offers in a given area need to be fully
automatic with data loggers that support remote access? Unfortunately, there are no
straightforward answers to these questions. While reinsurers would like weather index
insurance to be based on the best possible weather measuring instruments, they may be willing
to utilize data from something other than the most advanced weather stations if cross-
verification can be done using data from nearby fallback (or “buddy”) stations. Alternatively,
satellite or reanalysis data can sometimes be used for cross-verification.

The answer to the “how good is good enough” question may also depend on various
characteristics of the insurance contract. If the contract triggers indemnities for relatively small
rain shortfalls (e.g., 10 percent below the expected value), reinsurers are likely to insist on more
sophisticated rain gauges. If the contract triggers indemnities only for the most extreme
droughts (e.g., 40-50 percent below the expected rainfall value), reinsurers may accept less
sophisticated rain gauges because they can cross-verify such catastrophic events using other
data sources. If the contract is for a relatively short period of time, e.g., cumulative rainfall over
a 10-day period, reinsurers will want better rain gauges. If the contract is for cumulative rainfall
over a seasonal period of 60-90 days, reinsurers may accept less precise instruments.*®

Thus, there is no clear cut answer to the question of what it would cost to populate a region
with weather stations that are adequate to support index insurance offers. Instead the answer
depends to the characteristics of the insurance contract and the availability of alternative data
sources that can be used for cross-verification. For automatic weather stations with data loggers
than can be accessed remotely, one must also consider the costs of shipping, installation,
providing a power source, providing a remote access mechanism, and any security measures. It
is also critically important to recognize that this is not just a one-time cost. Any weather station
must be maintained. Fully automatic weather stations must be maintained by highly skilled
professionals. The recurring cost of performing maintenance on automatic weather stations
located in rural areas of lower income countries is likely to be quite significant.

4.1.3 Spatially Interpolated Weather Station Data

The discussion in the previous chapters suggests that the availability of weather index insurance
will be severely limited if each index must be based on actual data from a single weather station.
In areas where a weather station is not available, an alternative might be to create indexes
based on spatially interpolated data from surrounding weather stations.

®For temperature-based index insurance, reinsurers will require very sophisticated weather stations if
insuring against minimum or maximum temperatures during a window of time. Less sophisticated
instruments may be acceptable for contracts based on average temperatures or cumulative temperatures
(e.g., growing degree days).
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Spatial interpolation describes the process of using data from weather stations to estimate
weather variables (e.g., rainfall) at a specific point between these stations. The most basic
spatial interpolation models assume that the available data are distributed independently
according to the normal distribution, meaning that taking an average of the observed data
points should give a reliable estimate of the value at the unobserved target point. However,
weather variables are not always normally distributed or independent. Cumulative rainfall, for
example, is frequently modeled using a Gamma distribution and during certain times of the year
the amount of rainfall in one area may be highly correlated with the rainfall in a neighboring
area.

Kriging is a spatial interpolation technique designed to correct for these correlations and give a
weight to each observed data point based on its expected relationship to the unobserved point
whose value is being estimated — this expected relationship depends on geographic distance,
topography, etc. (see Bohling, 2005, for a general introduction to kriging). Kriging is a linear
regression model, which provides not just an estimate of the unknown value but also a rough
approximation of its accuracy. While there are many types of kriging, each distinguished by the
way it assigns these weights, the easiest way to think about kriging is to imagine that you have
the set of observations (lettered A—E) and are trying to measure a value at some unobserved
target point X as illustrated below:

A

e — v

\‘*‘D

In this case, rainfall data from point E would have a low weight in the equation (Ali, Lebel, and
Amani, 2005; see the equation in Section 4.1.1) because it is far from X. Points A, B, and C will
also be discounted because they are located so close to each other that there is likely a high
covariance between the observations taken at each of these points — meaning that they are, to
some degree, redundant. Point D will likely have the highest weight because it is both close to X
and is not overlapping with other values from the same neighborhood (low covariance with
other observed values).

There are a few basic types of kriging that may prove useful in constructing weather indexes.
Simple kriging assumes a single mean for the entire area of interest (similar to estimating based
on the normal distribution). In ordinary kriging, the weights that are assigned to various data
points reflect the assumption that individual regions each have a local mean. The boundaries of
those regions are determined by a variogram, a statistical measure specific to the spatial
distribution. In universal kriging, these local means are replaced by linear functions that
estimate how values change as they approach the estimation target point. Finally, indicator
kriging uses some underlying variable that can be measured at the target point as well as the
known data points and tries to create an index relating the easily observed variable to the data-
scarce target variable (rainfall). Sophisticated kriging models sometimes also use the general
pattern of the spatial and temporal presentation of the weather event to enhance point
estimates.
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While kriging is a very robust estimation process in many circumstances, giving estimates with
low mean squared errors, it suffers from one particularly important drawback. Kriging
systematically underestimates the likelihood of extreme values at unobserved target points. It is
by definition a weighted average of observed results. Consequently, its estimates tend to be
drawn down by averaging the extreme observations with less extreme observations in the data.
This is an important shortcoming for potential index insurance applications.

4.2  Reaction and Looking Forward

The data available from the NCDC (and others) indicate that weather station infrastructure is
underdeveloped in many regions, especially regions of Africa, to a degree that likely prevents
weather index insurance products based on weather stations or at least limits the types of
products that could be offered. Our analysis of the cost of purchasing, installing, and
maintaining new weathers stations indicates that these costs can seem quite high if the sole
purpose is to support a weather index insurance program. A several thousand dollar per station
investment could take years to recuperate based on the premium payments from poor
households in the rural regions that the weather station would serve. Nonetheless, it is certainly
worth noting that systems which provide publicly available weather data are public goods that
can provide countries with many positive benefits beyond the potential for a weather index
insurance program.

It is the ongoing mission of WMO and others to help governments appreciate the many social
benefits of strong weather data, for example, for improved disaster response. WMO (2008)
developed a report highlighting the challenges of, and rationale for, developing adequate
weather information systems in developing countries. We describe some of the WMO findings
in Box 7.

Box 7 World Meteorological Organization (WMO) Perspective: The Needs of
National Meteorological and Hydrological Services (NMHS) Providers in Africa

WMO developed a report highlighting the challenges of adequate early warning systems in developing
countries. Records of accurate and frequent weather observations provide countries with the ability to
predict and plan for hazardous weather events. Natural disasters often result in casualties and resource
losses, and 90 percent of the disasters from 1980 to 2005 were weather or climate related (WMO,
2008, p. 2). Weather related disasters are particularly devastating to lower income countries where
early warning systems also tend to be underdeveloped and underfunded (p. 18). Instead of risk
assessment and efforts that prevent casualties and economic disaster, these countries tend to focus on
actions to take after a weather crisis (p. 16). Early warning systems include weather analysis,
forecasting, and warning capacities and data collection (e.g. from observations, radar, satellite, etc.)
and analysis by skilled workers, data storage through computer systems and information technology,
infrastructure maintenance, and information dissemination. The WMO reports that ongoing funding is
needed for these services provided by the National Meteorological and Hydrological Services (NMHS).
Having a coordinated system that has clear technical guidelines implemented by a well-trained staff
and information technology to support the communication and data transfer needs can protect the
people and properties of every country (p. 17).

If they have suitable technology and funds, NMHS providers can provide essential services such as
warnings for weather related hazards, assistance to emergency response organizations, data analysis
for development and crisis preparation, education of the public on potential disasters and the actions
to take before, during, and after such disasters, and recommendations to improve emergency
notification and response (p. 6). These services can also help scientists monitor trends to guide
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investment policies, provide methods for improving crop production by indicating prime sowing and
harvesting periods, indicate areas of land that are vulnerable to flooding, and prevent the loss of life
and resources through emergency preparedness and response data. However, less-developed areas,
including many of the countries in Africa, are not able to fund these services.

Underdeveloped early warning systems exist in almost all lower income countries; however, since 33 of
the 50 countries the United Nations considers “least developed” (p. 37) are in Africa, the most
significant NMHS needs are there. In a survey given by WMO to African NMHS providers, 100 percent
of the respondents report that technical improvements to the warning systems would enable them to
improve their disaster prevention capabilities (p. 30). Ninety-two percent of respondents also say that
a better prepared staff would also improve the risk assessment ability of NMHS providers (p. 30). Most
(92 percent) of the responding NMHS providers in Africa also think that government needs to recognize
the importance of the NMHS in reducing weather risks (p. 36). According to the WMO report, 96
percent of respondents claim that they are unable to provide the best services because of a lack of
resources and a weak infrastructure, with limited funds and well-trained staff cited as the biggest
problems (p. 37). The report concludes that many African NMHS providers need to improve record-
keeping, policy guidelines, organizational partnerships and memberships, observation networks,
telecommunications, warning systems, quality control, and risk assessment tools, among others (pp.
39-42). These improvements cannot be made without continued assistance from organizations and
governments. Most projects that have attempted to assist African NMHS providers have a limited
timeframe, but the improvements needed in Africa require long-term support that typically must come
from government (p. 43).

Source: WMO, 2008

Given the high costs of purchasing, installing, and maintaining new weather stations, it may be
difficult to scale up weather index insurance offers into areas that have sparse weather stations.
This is particularly true for products that require estimating rainfall at a specific point (e.g.,
household products). In response, we arrive at two conclusions to guide future index insurance
product development. First, in many regions, due to data constraints the development of risk
aggregator products will be more feasible than for household products. While some regions may
have data systems sufficient to support the development of scalable household products, these
are likely to be the exception rather than the rule. Instead, we encourage the development of
risk aggregator products, which tend to have much lower data requirements. Second, since
weather station infrastructure is likely inadequate to support scaled-up index insurance offers in
many lower income countries, it is important to investigate the potential for using data collected
from alternative sources, such as satellites. We discuss special considerations associated with
remotely-sensed data, and consider the potential index insurance applications of these data.

4.2.1 Data Constraints Are Less Binding for Risk Aggregator Products than
Household Products

The spatial specificity demands of index insurance depend greatly depend on product design —
risk aggregator products require regional data (e.g., each data point represents an area of, say,
50 km x 50 km or 100 km x 100 km) while household products tend to require location-specific
data. Risk aggregator products and household products tend to be quite different in terms of
the cause of loss, which in turn has implications for the index. As an illustration, consider two
insurance product designs in the same region — a household product and a risk aggregator
product, both protecting against deficit rainfall. For the household product, the cause of loss is
deficit rainfall at the site where the household lives and works (for simplicity, suppose
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households tend to own and live on small farms). Thus, the household product needs an index
that approximates deficit rainfall at a specific, geographic location (e.g., the site of the
household’s farmland). The risk aggregator product is designed for a bank that lends to
households and firms in a rural region. The bank is exposed to extreme deficit rain that results in
high levels of loan defaults and savings withdrawals. This, in turn, leads to liquidity constraints
and large losses for the bank. Thus, the cause of loss is extreme deficit rainfall over the whole
region where its clients live and work. For the risk aggregator product, the index needs to
approximate rainfall in the region, not at a specific location within that region.

This difference in data needs result in much less challenging data requirements for risk
aggregator products. There are several reasons for this. First, it is easier to estimate regional
values than to estimate the value at a specific geographic point in that region. Second, as
indicated earlier, using several weather stations tends to lower estimation error compared to
using a single weather station (Ali, Lebel, and Amani, 2005; see the equation in Section 4.1.1).
Ali, Lebel, and Amani (2005) analyze two scenarios of comparable weather station density in the
Sahel, one weather station in a 1° x 1° (latitude by longitude) area and six weather stations in a
2.5° x 2.5° area. They find that using the six weather stations results in lower error than using
the single station. Third, risk aggregators tend to be affected by the most extreme events and so
risk aggregator products are likely to be designed around extreme events. We propose a
research agenda for the SKR based on our hypothesis that losses from extreme events tend to
be more highly spatially correlated than for moderate losses (Chapter 5 and Appendix B).

In sum, risk aggregator products are likely to be a “low hanging fruit” for practitioners facing
significant data constraints. Many regions of the world simply do not have the data capabilities
to support household products, and the cost of developing weather station infrastructure is
likely to be so expensive that the opportunity costs of weather index insurance development
may exceed the benefits. As will be developed in a subsequent SKR, risk aggregator products
have the potential to provide immediate positive benefits through enhanced performance of
risk aggregators — providing important services to the region as well as the longer-term benefit
of insurance market development, which may lead to a broader range of insurance products in
the future.

4.2.2 Alternatives to Use of Weather Stations

Given the constraints associated with existing weather stations both in terms of the sparsity and
the high maintenance cost, alternative data sources are needed to improve the scalability of
weather index insurance. One promising source is the variety of observational measurements
obtained from satellite-based or aircraft mounted remote sensors. In some cases there is as
much as 30 years of data covering much of the globe. Other practical advantages of data
collected from satellite platforms are the uniformity of the measurements and the systems, and
the ability to standardize the data acquisition contracts. These factors improve the potential
scalability of index insurance products using remotely sensed data. One limiting factor in the
past was the computational power and data storage requirements needed to effectively and
routinely use remotely sensed data. As these constraints ease, and as the science of these
information systems advances, there may be significant opportunities to advance index
insurance product development. As with any climate observation system, remotely sensed data
has its own set of limitations and constraints.
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4.2.2.1 ADDITIONAL CONSIDERATIONS FOR SATELLITE-BASED TECHNOLOGIES

The considerations discussed in Chapter 3 also apply to remotely sensed data. However,
because of challenges associated specifically with using satellite-based data for assessing the
pure risk and for making contract settlement, we provide several considerations here that
extend the discussion in Chapter 3.

Length and Continuity of Time Series. Some of the initial satellites collecting ongoing
meteorological data went online in the late 1970s and early 1980s. Thus, they have an
approximately 30-year length of available historical data. Satellite classification is related to the
potential length and continuity of an observational data series. Net continuity in a data series,
which can be related to satellite failure risk or the end of a specific program, must be evaluated
during the design phase of an index program based on remote sensing. Understanding
operational capacity, of having a continuity plan in place in case of satellite or sensor failure, will
help in assessing the risk that index settlement data will not be collected. There are four classes
of satellites (Hipple, 2010):

e Experimental: characterized by a limited time series and operational life.

e Research: data series may be lengthy or short although data cost may be low. Usually no
continuity plan is in place so there exists insurance settlement risk from satellite failure.
All NASA satellites are research orientated although they may feature lengthy data
series, such as those from MODIS.

e Non-commercial operational: government operated systems, such as the NOAA-N Series
(AVHRR), characterized by low cost data with continuity plans which reduces insurance
settlement risk.

e Commercial operational: characterized by good continuity providing there is sufficient
demand, and the possibility of high resolution imagery. Data are priced to incorporate
operational costs and capital recovery which may be too expensive for some index
insurance programs that do not have scale or adequate external support.

Calibration between and within Sensor Systems. Zenith angle changes due to drift and orbit
changes, aging of the sensor, and other variables can create variations in the observations of a
satellite-based device over time and must be detected and compensated for in the algorithms
used to interpret the radiometric readings. Such challenges are especially true for data collected
in the 1980s and early 1990s (e.g., see Box 8 for a review of AVHRR). Newer sensor arrays
correct for some of these problems (Fensholt et al., 2009). A much investigated challenge is
matching data collected from one sensor system with data collected from another (e.g., Ali et
al., 2005; Fensholt et al., 2009; Uppala et al., 2005). Comparing across satellites using the same
technology also requires calibration; however, the most challenging calibration is comparing
across technologies. While newer technologies overcome problems with older satellite-based
technologies, these changes can also create discontinuities in the data. While multiple systems
created data redundancy, one must also ask how much variation is acceptable in index values
across different technologies. In a related matter, the algorithms used may differ in subtle ways
such that when applied to the same raw data they produce different results. Changes in the
algorithm may also not be routinely reported, particularly from research satellites so
understanding and documenting the algorithms used is an important part of the insurance
design process. As Chapter 3 discusses, accurately assessing the pure risk is crucial to the
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longevity of the index insurance program so practitioners will want to make certain their data
are consistent across time.

Spatial Specificity. Increasingly, new applications for satellite-based data are emerging. Much of
the increase in data demand is associated with climate change analysis. While climate change
and weather index insurance overlap in terms of important weather variables such as
temperature and rainfall, climate models can often use data with low spatial specificity, e.g., 1°
latitude x 1° longitude or greater. One degree of latitude or longitude is roughly equivalent to
111 km at the equator. Thus, a 1° x 1° spatial resolution provides one data point about every
12,300 kmPP2PP. Newer sensor systems, particularly those of commercial vendors, offer much
finer spatial resolution, as small as 1 m.

Calibration to Ground Level. Similar to calibrating across sensor systems, researchers conduct
perhaps even more analyses matching satellite-based data with ground-level data. Such
calibrations can depend on the climatic and topographical features of a region. Thus,
researchers make these comparisons for specific locations. Perhaps because they are calibrated
based on the mean, satellite-based technologies tend to measure extreme events poorly (Kahel,
2009), an unfortunate feature for index insurance.

4.2.3 Evaluating Satellite-based Technologies

We consider several satellite-based data sources in the context of index insurance. While we
have already discussed some of these data sources, this section provides a further review of the
potential usefulness of these technologies. However, this is meant as an example of some of the
main sources and is not an exhaustive review of instrumentation or potential applications. In
particular, vendors of satellite-based data products and vendors of commercial operational
satellite services are not reviewed.

4.2.3.1 VEGETATIVE INDEXES: NDVI

Vegetative indexes comprise a whole class of optical measures of the photosynthetic potential
of the observed vegetative canopy as a result of total leaf area, chlorophyll levels, cover and
plant structure. The measurements are used as proxies in estimating these and other plant
canopy state variables which can be understood as an estimate of plant health (Heute et al.,
2006). There are in excess of twenty different vegetative indices with most derived from sensor
readings of either an Advanced Very High Resolution Radiometer (AVHRR) or a Moderate-
resolution Imaging Spectroradiometer (MODIS) (Yang, Z. Willis, P., and R. Mueller, 2008). Other
indexes can be created using a combination of optical and other sensory data such as moisture
or thermal readings. The choice of vegetative or related index to use as a proxy for loss in an
index-based insurance product will depend on how well the index correlates with the
phonological cycle during critical time frames for a particular crop. As with any index, validation
with in situ historical data is necessary, particularly for those years known to have generated
significant losses.

The Normalized Difference Vegetative Index (NDVI) is one of the most commonly used satellite-
based vegetative indexes for weather index insurance (Box 8). It has high spatial specificity, and
a relatively long time series. It is frequently used as a proxy for drought conditions based on the
estimate of plant health. An index insurance pilot based on NDVI is currently being developed to
insure against drought risk for pastoralists in northern Kenya (Chantarat, 2008). The United
States Risk Management Agency has since 2007 offered a pilot Pasture, Rangeland and Forage
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(PRF) insurance product which is an area based vegetative index using NDVI data. In addition to
the PRF product that is currently offered in nine states, a pilot apiculture insurance product has
been developed that also utilizes NDVI data (Alston, 2010).

Box 8 Normalized Difference Vegetation Index (NDVI)

NDVI is a measure of vegetation density. Data are collected by Advanced Very High Resolution
Radiometer (AVHRR) sensors on polar orbiting satellites managed by the U.S. National Oceanic and
Atmospheric Administration ([NOAA]; NationalAtlas.gov, 2009). AVHRR measures both the visible light
spectrum and the near infrared light spectrum. While plants absorb visible light for photosynthesis,
they reflect near infrared light. Thus, discrepancies in the reflection of visible light to near infrared light
are an indication of plant life (Weler and Heming, 2010). Researchers use an algorithm that transforms
light wavelengths into estimates of vegetation density. Less healthy plants absorb less visible light so
NDVI is also an indicator of plant health. By comparing historical NDVI values to present values, NDVI is
being used to assess drought in some contexts (Bayarjargal et al., 2006; Peters et al., 2002). Satellite
data also provide estimates of rainfall and temperature, which have been used in conjunction with
NDVI data to create other drought estimation models; however, these different models yield differing
results. Determining which NDVI-based models are most appropriate depends on the potential
application of the model (Bayarjargal et al., 2006; White and Walcott, 2009).

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a newer sensor technology than
AVHRR and is implemented on two polar orbiting satellites, Terra and Aqua, which are managed by the
U.S. National Aeronautics and Space Administration (NASA, 2010c). MODIS has a higher spatial
resolution and overcomes some problems experienced by AVHRR (Weler and Heming, 2010). Studies
comparing NDVI data from AVHRR and MODIS find important differences in these data sources (e.g.,
Fensholt et al., 2009). Newer sensor technologies (e.g., the Visible Infrared Imaging Radiometer Suite)
are being advanced to replace MODIS in 2013 (NASA, 2010c).

Spatial specificity: AVHRR, 1 km’
MODIS, 250 m’
Temporal specificity: Daily (both AVHRR and MODIS)

Length of time series: AVHRR, 1981 to present (NationalAtlas.gov, 2009)
MODIS, 1999 to present (NASA, 2010a)

AVHRR and MODIS have several data collection problems: imaging can be blocked by cloud cover and
aerosols in the atmosphere, glare from the sun can saturate the color spectrum, and the satellites can
malfunction (Weler and Heming, 2010). Because of these problems, researchers often use composite
NDVI data that combines data from several days (e.g., a 10-day index; Chen et al., 2004) and several
data pixels (e.g., 8 km resolution; Tucker et al., 2005).

Application of NDVI should be done with care. Despite its high spatial resolution, NDVI may not
be useful for identifying drought conditions in a specific location. The method for predicting
drought with NDVI depends on comparing the current value of NDVI for that location and time
of year to NDVI values in previous years, which collectively is termed “normal.” On a small scale
this approach can be problematic because land use may change. The biggest challenge in this
regard is that different crops have different light requirements. Comparing across different
crops, Thenkabail, Smith, and DePauw (2000) found crop growth was optimally modeled using
different light bandwidths for different crops. NDVI values in a specific location may change if
farmers plant a different crop than in previous years, or intercrop in some years and not others.
One could envision a scenario in which a certain commaodity price increases and the crop profile
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for a whole region alters, affecting NDVI values. Likewise, if farmers anticipate drought and plant
different crops, it may change the NDVI assessment of drought in that location.

NDVI may also be problematic in situations where there is significant upper tree canopy or brush
cover such that it becomes difficult to accurately estimate crop plant health. NDVI may also not
be the most appropriate choice for an index product that focuses on yield outcomes when
photosynthetic capacity is not the main yield determinant.

As a result, NDVI is perhaps best used as a gross indicator of plant health in a region. This lends
itself well to the use of NDVI for pastoralists who are concerned about grassland vegetation in
regions such as northern Kenya. Index insurance using NDVI is likely most appropriate for
insuring against extreme droughts that are likely to have widespread effects. Additionally, it may
be most useful for risk aggregators that are particularly vulnerable to regional effects.

4.2.3.2 SATELLITE MEASUREMENT OF RAINFALL

Over the past 10 to 15 years, several high-resolution products for estimating rainfall from
orbiting satellites have been developed and implemented (Box 9). Satellite rainfall products use
algorithms that combine data from multiple satellites to estimate ground-level rainfall. It is
important to remember that these observations are made from orbit, looking down on and
through clouds. To identify how much it rains from this perspective requires identifying both the
intensity and duration of rainfall, yet because satellites are in orbit they are sometimes unable
to observe a cloud for the duration of a storm.

Satellites estimate rainfall using infrared and passive microwave radiation data. Infrared
temperature observations of the tops of clouds provide an estimate of the intensity of rainfall.
Passive microwave radiation can be measured through clouds, identifying the energy emitted by
rain drops to estimate the intensity and vertical distribution of rainfall. Infrared rainfall
estimates tend to be less accurate than the passive microwave data; however, infrared data can
be collected by more satellites. Given the coverage of orbiting satellites, infrared data can be
measured continuously across the globe and are used to “fill in the gaps” when passive
microwave data on rainfall are unavailable (NASA, 2010d).

Comparisons of satellite estimates of rainfall to ground-level observations show that satellite
estimates contain significant error, but these estimates are improving. Generally, satellite
rainfall products tend to correlate better to gauge-based data in warm seasons than in cold
seasons, and correlate better in wetter regions than drier regions (Shen, Xiong, and Xie, 2008).
Complex, varying terrains also challenge satellite rainfall products (Dinku et al., 2008).

e a7
JESYe%
/ '\\"0‘,& a

Gﬁﬁiﬁgm&kk



State of Knowledge Report — Data Requirements for the Design of Weather Index Insurance
Chapter 4 Real-World Data Constraints: Limited Weather Station Infrastructure and
Opportunities for Satellite-based Technologies

Box 9 Satellite Estimates of Rainfall

We profile four satellite rainfall products that use algorithms to combine infrared, microwave, and
(sometimes) rain gauge data to estimate rainfall. One of the satellites, TRMM, is the only satellite with
weather radar and so has additional rainfall estimation capabilities (NASA, 2010b). One of the other
satellite rainfall products, PERSIANN, also includes TRMM as part of its algorithm.

Spatial Temporal Geographic
Product* Specificity Specificity Time Series Area Data Type
CMORPH 0.07°x0.07° 30 minutes December 3, Global MW, IR
(8 km at the 2002 to 60°N-60°S
equator) present
TRMM 3B42 0.25°x 0.25° 3 hours January 1, Latitude MW, IR, RG
1998 to 50°S-50°N
present
PERSIANN 0.25° x 0.25° 30 minutes 1997 to Global IR, MW, RG,
accumulated present 50°S-50°N TRMM
to 6 hours
Africa RFE 2.0 0.25° 6 hours January 1, 20°E-55°W IR, MW, RG
20 oo
P (Africa)

Intercomparisons of these rainfall products indicate that CMORPH tends to perform best (Sapiano and
Arkin, 2009). However, CMORPH tends to significantly overestimate rainfall during warm seasons
(Zeweldi and Gebremichael, 2009). In other studies, CMORPH underestimates rainfall. For example,
Shen, Xiong, and Xie (2008) find that in China, CMORPH and PERSIANN underestimate rainfall, while
TRMM 3B42 overestimate rainfall. In that study, the mean biases of satellite rainfall products ranged
from -10 to +5.7 percent, depending on the product — the least biased product is one of the TRMM
products and was -3.7 percent. A comparison of rainfall products in Africa indicates RFE 2.0, CMORPH,
and TRMM satellites perform comparably overall (Dinku et al., 2008); however, on complex terrain,
RFE 2.0 and TRMM 3B442 perform best and PERSIANN performs worst (Laws, Janowiak, and Huffman,
2004). Laws, Janowiak, and Huffman (2004) found satellite rainfall products tended to be positively
biased for low daily rainfall values (values under 11 mm) and negatively biased for high daily rainfall
(values greater than 20 mm).

Satellite-based estimates of rainfall are expected to improve in the future, especially as passive
microwave sensors become more prevalent among orbiting satellites. For example in 2004, 6 passive
microwave sensors were used by CMORPH (Joyce et al., 2004); as of December 2009, CMOPRH used 9
passive microwave sensors (CPC, 2009).

“This table was developed from product descriptions on NASA and NOAA websites. In the last column IR
is infrared, MW is passive microwave, RG is rain gauge, and TRMM is the satellite Tropical Rainfall
Measuring Mission.
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4.2.3.3 SAR

Synthetic aperture radar (SAR) is used to map contours of geospatial environments such as fault
lines in earthquake-prone regions (Box 10). More importantly for index insurance, it can be used
to map the contours of extensive flooding. Satellite-based systems for collecting SAR data share
all the advantages of other satellite-based data systems (e.g., low marginal cost and large
coverage areas). However, SAR has the unique advantage of being able to penetrate cloud
cover.

Satellite-based SAR data also share a problem of other satellite-based data systems. There are
gaps in the data collected because the satellite is only in a position to collect images for a given
location for a few days out of every orbit cycle. This means that there are necessarily gaps in the
historical record of images that may include key moments in weather or natural disaster events
(Holecz, 2009). The question of SAR data coverage is further complicated by the fact that SAR
satellite images are made to order. While a SAR satellite may be in position where it could be
taking images of flooding in a given delta in Vietnam, for example, it may instead be recording
data from other regions within its field of view that have a higher priority. This means that there
is no guarantee that index insurance professionals can access a continuous historical record of
SAR data for any given point on earth (MDA, 2009).

Researchers have begun using existing SAR systems for new purposes such as satellite-based
measuring of wind speed in hurricanes. Such measurements remain in development and are not
yet widely available (Schiermeier, 2005).

Box 10 Synthetic Aperture Radar (SAR)

Just as ship navigators use radar to map the contours of their environment regardless of fog or
inclement weather, geoscientists use radar to monitor geospatial change when other imaging
technologies would be obscured by cloud cover. In the past, the resolution of radar-based images was
limited by the size of the antenna used to send and receive radar signals. The roughly hundred meter
long antennas needed to produce high resolution images simply could not fit on an aircraft or satellite.
The Synthetic Aperture Radar (SAR) process solves this problem, simulating long antenna by recording
the echoes of radar beams emitted at regular intervals and compiling the resulting data as though it
came from one long antenna (Sandia National Laboratories, 2008).

While areas of particular interest to geoscience, such as the major fault lines of California, are now
monitored by SAR using unmanned aircraft, most SAR data relevant to index insurance come from one
of the handful of SAR equipped satellites (Radarsat-2, Envisat, ALOS, TerraSAR-X, among others)
orbiting the earth (NASA, 2010e; Lotsch, Dick, and Manuamorn, 2009).

Spatial specificity: Varies by satellite and mode
e Wide beam mode: image field covers 500 km” with a pixel size of 100 m’

e Spotlight mode: image field covers 50 km”with a pixel size of 1-3 m? (Schiermeier, 2007; MDA,
2009)

Temporal specificity: The orbit cycles of existing satellites range from 11 to 41 days. While most of the
newer satellites can record images of a given location during multiple days in every orbit, there
remains some significant percentage of each orbit for which images of a given area are not available.
With newer satellites that black out period is as short as 4 days (Holecz, 2009; Schiermeier, 2007).

Length of time series: Various SAR equipped satellites have been in continuous operation since 1991.
However, as mentioned above, not all regions of the globe were under continuous monitoring during
this time so historical coverage varies by location (Schiermeier, 2007).
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Many additional SAR equipped satellites are planned for launch in the upcoming years. In particular,
the European Space Agency Sentinel-1 satellite, scheduled in 2011, promises to make a significant
contribution to the problem of sporadic data availability. It will acquire SAR images covering the whole
planet every 6 days (Holecz, 2009).

4.2.3.4 REANALYSIS DATA

Reanalysis data describes a class of data products that combines and calibrates observations
from many sources — weather stations, satellites (infrared and microwave imagers), weather
balloons, ocean buoys, aircraft, and ships (Uppala et al., 2005). Each data source has its own
time series so there are certain points in these models where there are fewer observations than
at other points. Reanalysis models use periods of overlap across data sources to “assimilate” the
data, i.e., to calibrate across data sources.

First- and second-generation reanalysis models (Box 11) do not seem suitable to act as the index
for an index insurance program. First, the spatial specificity of these models tends to be too
coarse (generally 120 km to 210 km). Second, these models tend to inaccurately estimate
rainfall, especially first-generation models such as NCEP/NCAR (Funk et al., 2003). NCEP/NCAR
does not use rain gauge data, which likely decreases the accuracy of its rainfall estimates (Funk
et al., 2003). These first-generation models have discontinuities and biases throughout the time
series. Poccard, Janicot, and Chamberlin (2000) analyzed NCEP/NCAR for Africa. They found an
abrupt shift in the data in 1967 that affects data for almost all of tropical Africa. NCEP/NCAR
tended to underestimate rainfall during the peak of the rainy season across regions in Africa.
These authors conclude that NCEP/NCAR is useful for studying “large-scale climate dynamics”
but significant problems restrict the use of NCEP/NCAR for studying “regional long-term
variations.” Newer reanalysis models seem to be much improved including higher spatial
specificity. However, accurately estimating rainfall is quite difficult for these models, too. For
example, ERA-Interim tended to overestimate rainfall during the rainy season for eight tested
regions in Africa (Sylla et al., 2009).

Specialized data products that incorporate reanalysis models (e.g., CMAP and CHARM) tend to
show some improvement over the pure reanalysis models, but also seem too inaccurate to
supply data for an index insurance product. Using data from the Sahel, Ali et al. (2005) show that
the reanalysis models used in that study (which included CMAP) tend to show regression to the
mean for both types of extreme events (an underestimating of excess rainfall and an
overestimation of deficit rainfall). Additionally, Funk et al. (2003) compared CHARM to
interpolated rain gauge data for two regions, one in southern Mali and another in western
Kenya. CHARM tended to underestimate extreme events in Mali and Kenya. CHARM showed
positive bias for rainfall in Kenya, and negative bias in Mali. Funk et al. (2003), who developed
CHARM, conclude that “neither the CHARM nor a [pure satellite] product is likely to be skillful at
a mesoscale resolution.” (p. 59)

Reanalysis models have come a long way in a short period of time, and reanalysis models
developed in the not too distant future may be sufficient to generate data for index insurance
products. Models under current development are reaching a level of spatial specificity
(approximately 35 km for Climate Forecast System Reanalysis and Reforecast {CFSRR]) that may
be sufficient to support some index insurance products. Climate modelers are likely to continue
to improve the accuracy of reanalysis models, making them more feasible for index insurance
applications.
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For index insurance, reanalysis products are currently most useful for analyzing the historical
weather risk. Since even newly developed reanalysis models tend to misestimate rainfall, these
models would probably not be accurate enough to act as the sole data source for estimating the
pure risk.

Box 11 Reanalysis Data

Reanalysis models typically develop values for their weather-related variables for the entire world.
Many weather related variables are included in reanalysis models including upper-air and surface wind,
temperature, humidity, sea surface temperature, land surface temperature (at 2 meters), soil
temperature, snow depth, infrared and microwave radiances, surface pressure, and oceanic wave
height (Uppala et al., 2005). The following are the main atmospheric reanalysis models: *

Spatial Temporal
Specificity Specificity
(Approximate)®  (Hour Intervals) Time Series Vintage Status
NCEP/NCAR 210 km 6 1948—present 1995 Ongoing
NCEP-DOE 210 km 6 1979—present 2001 Ongoing
CFSRR (NCEP) 35 km 6 1979—present 2009 In progress
C20r (NOAA) 220 km 6 1891—present 2009 In progress
ERA-40 125 km 6 1957-2002 2004 Done
ERA-Interim 80 km 6 1989—present 2009 Ongoing
JRA-25 120 km 6 1979—-present 2006 Ongoing
JRA-55 60 km 6 1958-2012 2009 Underway
MERRA (NASA) 55 km 1-6 1979—present 2009 In progress

The NCEP/NCAR is one of the first-generation reanalysis models developed in the late 1990s (Kalnay et
al., 1996; Trenberth et al., 2009) and is often included as a component of more recently developed
reanalysis models. NCEP/NCAR includes over 80 variables (UCAR, 2010). These first-generation models
have been widely used but experienced many problems (Trenberth et al., 2009). These models have
biases that change in magnitude and direction over time. For example, Funk et al. (2003) found for
Africa the NCEP/NCAR tended to consistently overestimate rainfall in the tropics from 1961 to 1996;
however, in the northern and southern subtropical regions, the pattern of bias in the 1960s and 1970s
differed from that in the 1980s and 1990s. Second-generation models such as ERA-40 address some of
the problems of first-generation models like NCEP/NCAR and tend to outperform these models
(Trenberth et al., 2009). ERA-40 incorporates data from NCEP/NCAR (Uppala et al., 2005). Instead of
updating ERA-40, ECMWF has developed ERA-Interim for 1989 to present, a period for which many
more data sources are available (ECMWF, 2010). New reanalysis models, such as CFSRR under
development by NCEP, will continue to address problems of previous models.

Many data products use one of these main reanalysis models as a component but add other important
variables, depending on the purpose of the data product. For example, CMAP is a data product
specializing in rainfall, and CHARM is a regional rainfall product for Africa.
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Spatial
Specificity Temporal Main Reanalysis
(Approximate) Specificity Time Series Vintage Model Used
CMAP 275 km 5-day 1979-2006 1997 NCEP/NCAR
CHARM Unclear® Daily 1961-1996 2003 NCEP/NCAR

CMAP provides full global coverage and is intended to improve large-scale rainfall estimates. It uses
rain gauges, satellite data, and NCEP/NCAR (Xie and Arkin, 1997). CHARM uses interpolated rain gauge,
topographical, satellite imagery, and NCEP/NCAR reanalysis data. The U.S. Agency for International
Development Famine Early Warning Systems Network (FEWS NET) uses CHARM to predict the
development of famine in several African countries.

There are other reanalysis data series and many other data for the types of weather-related variables
described above. The University Corporation of Atmospheric Research (UCAR) houses an inventory
with basic descriptions of these data products at (http://dss.ucar.edu/).

A Table adapted from Trenberth et al. (2009).

® Reanalysis models are spectral models and so are measured in terms of spectral resolution, not
kilometers; however, considering the spatial specificity of these models in terms of approximate
kilometers is most useful for our purposes. For more on spectral models see Krishnamurti et al. (2006).

 Funk et al. (2003) note that CHARM data are “generated with a 0.1° [10 km] resolution to facilitate
integration with satellite-based [rainfall estimates]...the actual resolution of CHARM data are

on

considerably courser than 0.1°.

4.2.4 Summary of Satellite-based Data Sources

With the exception of some specific perils in particular locations (e.g., NDVI in some large
rangeland areas), satellite-based data sources are not currently exploited for index insurance
products. However, because these technologies continue to improve and because satellites
have the potential for providing a consistent source of data that covers much of the globe,
satellite applications could become more prevalent. Two advancements in these technologies
would be particularly important for index insurance offers. The first is higher spatial specificity in
the data routinely collected and in the methods to use this data for insurance purposes. For
certain types of risk aggregator products, high special specificity may not be needed depending
on the environment. The second is improvements in calibrating data collected from satellites
with ground-level weather or other in situ data — especially for extreme events. The latter will
likely be a significant challenge. Calibration is conducted using available data and far more data
are available for typical events than for extreme events.

More opportunities exist for using satellite-based data and reanalysis data for estimating the
pure risk. While reanalysis data may not perfectly match ground-level data, they can provide a
much longer time series, making these data especially useful for identifying trends. One
reinsurer reported that his firm uses reanalysis data regularly for this reason. These alternative
data sources can also be useful when extreme events disrupt ground-level data sources (e.g., if a
flood washes away a weather station). Satellite-based and reanalysis data sources can also serve
as a quality check if weather stations provide an unusual data value, can be used to roughly
price a weather station with little history, and to assess the extent of basis risk around a
weather station during an extreme event. In sum, these data sources provide more information
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to practitioners, which can reduce ambiguity about the risk and allow insurers and reinsurers to
price the pure risk more sustainably. Because insurers and reinsurers charge a premium for
ambiguity, this added information can also lower the cost of the insurance.

If the market for weather index insurance in lower income countries is going to expand greatly
beyond current pilot programs, offers will need to use cost effective data sources other than just
weather stations as the index for settlement. While the satellite-based alternatives will no doubt
continue to improve, each will have strengths and limitations. Thus, it seems likely that indexes
will need to be based on data collected from multiple sources — similar to reanalysis data. As
the market for weather index insurance evolves, commercial firms are already investing
resources in developing and improving such measures — much as the catastrophe bond market
stimulated the development of private-sector firms that provide hurricane modeling services.
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Chapter 5 State of Practice: Evaluation of Current Index Insurance
Program Practices in Meeting Customer Demands and
Overcoming Data Constraints

To this point, the focus is on providing an overview intended to be an objective assessment of
the state of knowledge regarding data. In this chapter, we provide our synthesis of how the
current state of available data systems influences future development of index insurance. Our
analysis is based on knowledge of practices that have been employed in developing index
insurance products in recent years. As we are likely not fully informed regarding all aspects of
every index insurance product implemented in recent years, there are limitations that must be
acknowledged as well as acknowledging that our assessments are influenced by our own
experience in developing new index insurance products.

Most of the index insurance applications have been targeted to low-income households.
Nonetheless, we believe that many of our observations about these applications can be applied
to risk aggregator products. The conceptual model presented in this SKR provides the theoretical
framework for evaluating index insurance given real-world constraints. Based on the tension
between that theoretical framework, our analysis of where index insurance may best fit in lower
income countries, and our knowledge of current practices, we begin by critiquing two common
practices: 1) insuring against moderate losses; and 2) designing index insurance products solely
to protect against crop-yield losses for a single crop.

5.1 Insuring against Moderate Losses

In recent years, at least two developments have led practitioners to design products that insure
against moderate losses." First, some practitioners have come to the conclusion that
households will only maintain interest in insurance if the insurance makes frequent payments.
This concern relates to research suggesting that individuals have difficulty understanding the
probability of, or the potential magnitude of, catastrophic events (Kunreuther, 1996, 1976;
Kunreuther and Slovic, 1978; Tversky and Kahneman, 1973). Thus, in some cases, individuals
make decisions by essentially assigning zero probability to low-probability, high-consequence
events. This cognitive failure almost certainly contributes to the challenge of maintaining
household interest in a product that pays infrequently. Experience with the specific weather
index insurance products being offered in India seems to confirm this finding (Giné, Townsend,
and Vickery, 2008). Second, some practitioners have insured against moderate loss events to
facilitate the bundling of index insurance with other services. For example, some index
insurance programs are bundling insurance with loans that facilitate the purchase of yield-
increasing inputs. Typically, the sum insured by the index insurance is for the value of the loan
and the lender has first rights to any indemnity payment to cover the outstanding loan. Thus,
the index insurance acts as a type of loan guarantee. In some cases, lenders, who are concerned
that even moderate losses could cause loan defaults, have encouraged practitioners to offer
high levels of index insurance coverage relative to the expected value of the index.

We have a number of concerns with offering index insurance protection against moderate
losses. First, we have some expectation that basis risk problems may be more problematic when
insuring against moderate losses. As a simplistic example, assume that there is a 95 percent

7 We consider products that pay as frequently as 1 in 3 or 1 in 5 years as paying for moderate losses.
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chance that an index can estimate losses within plus or minus 5 percent of the actual value (i.e.,
the 5 percent error can be referred to as the basis risk). For this illustration, we make an
additional simplifying assumption (which we will relax below) that the 5 percent error does not
change depending on the size of the loss.*® Consider two contracts, one that protects against
extreme losses when the insured has experienced a roughly 25 percent loss, and another that
protects against moderate losses when the insured has experienced a roughly 10 percent loss.

Basis risk

- = Misestimate of losses
Insurance trigger

For insurance against the extreme loss, the misestimate of loss is 5%5y =20% . For insurance
(]

against the moderate loss, the misestimate of loss is 5%0 =50% . Because the moderate risk
(]

%
contract is attempting to insure smaller deviations from the mean, opportunities for
misestimating the loss are much greater. Additionally, because moderate risks occur more
frequently, inaccurate indemnities will occur more frequently. As a result, practitioners
developing products that pay frequently may feel that it is more important to reduce basis risk
and may engage in practices such as overfitting, which as we outline in Chapter 1, can actually
increase basis risk.

Second, in contrast to our simplifying assumption in the example above, we believe that basis
risk may change depending on the magnitude of the insured event. Specifically, underlying
physical processes of both weather events and specific types of losses may result in lower basis
risk for insuring against extreme events than insuring against moderate risks. It may be the case
that basis risk changes depending on the severity of the weather risk due to changes in the
spatial presentation of the weather risk.

In support of this hypothesis for drought, we cite the work of Bravar and Kavvas (1991) who
describe the physical processes of rainfall to demonstrate that when regions experience
drought, it becomes much less likely to rain in that region. In brief, evaporating soil moisture
increases humidity. At a certain level of humidity, the air becomes saturated causing passing
clouds to rain. If evaporating soil moisture is insufficient to elicit rain, then this soil moisture is
not replaced, resulting in lower humidity and a decreased chance of rainfall. Thus, drought
causes a positive feedback loop, which must be broken by a weather front with sufficient
moisture that develops in another region. This positive feedback loop is a physical process much
different than those in patterns of moderately low rainfall.

A research agenda motivated by this SKR is to examine how spatial correlations of drought and
excess rainfall change depending on the severity of the risk (Appendix B). It is also the case that
extreme values of rainfall tend to be a much better predictor of losses than rainfall values close
to the mean, for specific types of loss events. Two examples may make the point. First, in flood-
prone regions, extreme flooding is a much better predictor of extreme losses than moderate
flooding is of moderate losses. Second, extreme drought is a much better predictor of extreme
crop failure than moderate drought is of moderate crop failure. Moderate shortages in rainfall
will affect crops in the same region in different ways depending on the soils, crop varieties, and
other input variables. However, beyond certain thresholds of depleted soil moisture,

18 . . . .
More fundamentally, we are assuming that the variance of losses is constant across all values of rainfall.
With a constant variance, the relative risk increases as the expected value of rainfall goes down.
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photosynthesis slows and plants stop growing. Additionally, when plants do not meet water
satisfaction requirements, inputs such as fertilizer have little impact on plant growth. Thus,
under many conditions extreme rainfall deficits are a better predictor of extreme crop losses
than moderate rainfall deficits are of moderate crop losses.

Third, due to basis risk, index insurance provides a rather imperfect loan guarantee — especially
for moderate losses. By incorrectly suggesting that index insurance can provide a loan guarantee
against moderate losses caused by more frequent but less extreme weather events,
practitioners run the risk of eventually losing credibility with lenders and insureds. We strongly
support the concept of bundling index insurance with other services as a more efficient delivery
mechanism. Our concern is that, instead of advancing an agenda with lenders about the optimal
use of weather index insurance given its limitations, practitioners who design contracts that pay
frequently with the intent of protecting individual loans, may be overlooking the data limitations
and giving potential users a false sense of security about the protection that these products
provide.

Fourth, due to high transaction costs, insurance is a rather expensive financial instrument and is
designed to protect against low-probability, extreme losses, while savings and credit are
generally more economically efficient mechanisms for managing small to moderate losses.*

Fifth, it can take years for households and firms to recover from extreme catastrophic events.
For example, our analyses with data from lenders in northern Peru indicate it took roughly five
years for households and firms to recover from the 1997-98 El Nifio (Collier, Katchova, and
Skees, 2010). Experience with Hurricane Mitch in Honduras indicates that, for many years
afterwards, some households continued to struggle due to losses from that event (Carter et al.,
2007). The literature related to poverty traps suggests that in some cases the working poor may
not be able to recover from these events (Barnett, Barrett, and Skees, 2008; Sachs and Arthur,
2005). The most efficient use of insurance is to protect against extreme catastrophic events that
can threaten long-term wealth positions. When, instead, weather index insurance is designed to
protect against more moderate losses, the price of insurance is high compared to a catastrophic
policy. As a result of the higher price, households and firms purchase less insurance and, when a
catastrophe occurs, are not as well protected. Thus, insuring moderate risks tends to divert
resources away from the most effective use of weather index insurance — transferring
catastrophic weather risk.

5.2  Emphasis on Crop Yields

Another common practice among many researchers and practitioners is to think of weather
index insurance as a form of crop insurance. To those in the insurance industry, this may not be
surprising. Much of the innovation that led to weather index insurance was motivated by

YPitis important to note that while market-based insurance products are not social programs, indexes can
be used to finance social programs that protect against catastrophic weather events. However, it is critical
that such social programs be designed so that they crowd-in, rather than crowd-out, complementary
market-based insurance products. For example, if governments or donors wish to subsidize weather index
insurance offers, they should consider doing so by funding a social program that protects against the most
extreme layer of risk —those extremely rare loss events (e.g., a frequency of 1 in 25). If carefully
constructed, such social programs can actually facilitate market-based offers of weather index insurance
for relatively more frequent (e.g., 1 in 10 year) catastrophic events.
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problems with traditional crop insurance programs that focus on farm-level crop yields (Skees,
Black, and Barnett, 1997; Martin, Barnett, and Coble, 2001). Such models were developed for
higher income countries where many farmers specialize in specific crops and where data on
crop yields and household income are abundant. Furthermore, the input packages used to grow
crops in higher income countries are also significantly more homogenous than those used to
grow crops in lower income countries.

Weather index insurance programs for specific crops are available in the United States and
Canada. It is not surprising that much of the development of index insurance in lower income
countries follows processes used in developed countries. However, this approach ignores data
constraints in lower income countries and, to a large extent, is inconsistent with risk assessment
findings regarding household livelihoods. Regarding data constraints, we return to our
conceptual model for illustrative purposes. In our model, practitioners strive to identify the
relationships between

Index €= cause of loss €= losses of the insured

and this process requires both an understanding of each of these distributions and of the
relationship between distributions. An implicit assumption of the conceptual model is that the
index around which the insurance is designed captures the loss exposure of the insured due to
the cause of loss. When practitioners emphasize crop yields in lower income countries, they are
using a (potentially poor) approximation for losses of the insured. Said differently, yield losses
are simply one indicator of household well-being. While the relationship between yields of a
specific crop and the well-being of the insured may be highly related for many farmers in
developed countries where crop specialization has led to highly specialized farms, it is less clear
that the yield of a specific crop is as important to households in developing countries (more on
this below). Thus, these practitioners have added another step by focusing on yields.

Index €-> cause of loss €~ yield losses €-> losses of the insured

As we discuss in Chapter 1, each distribution and each relationship that practitioners must
estimate introduce additional basis risk. Thus, the emphasis on yields can also increase basis risk.
The reader will also remember that quantitative loss data — for yields and for household losses
more generally — often do not exist in lower income countries. Thus, practitioners emphasizing
yields are put in the difficult position of working across several distributions for which they have
no quantitative data. Compounding the problem: it is not clear that the relationship between
crop yields and losses of the insured is necessarily linear, making it more difficult to estimate. In
addition, the relationship will differ between individuals in the target market due to
heterogeneity in their income strategies.

Risk assessments reveal the many concerns of households and firms. When these stakeholders
talk about natural disasters, the most salient effects in the community are losses to well-being
— households losing assets and depleting savings, increasing food prices, families starving, and
loved ones dying. The second topic stakeholders identify includes the many diverse
complications of the event. Floods in Peru are a good example. Household crops are destroyed;
fertile topsoil is washed away; pest problems increase significantly; infectious diseases increase
due to sedentary water; bridges and roads are destroyed and take months to repair; many
households are isolated without access to food for extended periods, firms cannot transport
goods nor receive supplies; etc. Clearly, losses caused by extreme weather events extend well
beyond the impact on crop yields.
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Broader research and risk assessments also tend to indicate that most smallholders in lower
income countries do not rely on the yield of a single, specific crop (World Bank, 2007). Instead,
they plant a variety of crops and often have livelihood portfolios that are diversified across labor
activities besides farming. Berg and Schmitz (2008) demonstrate that weather index insurance
for a specific crop is a much less effective risk management tool for households with a
diversified portfolio than for those that specialize in a specific agricultural commodity.
Therefore, insurance with a focus on a specific crop is likely of limited value for smallholders in
the majority of the developing world.

Even within the limited realm of production agriculture, presenting index insurance only as a
means of protecting crop yields can miss some of the more important production risks and the
potential value of such products. For example, in the central highlands of Vietnam, smallholder
coffee farmers are exposed to drought, but when drought occurs, these farmers often manage
yield losses by increasing irrigation. However, when they extend the irrigation season, they also
incur significantly higher costs as the water table is depleted and irrigation becomes more
expensive. Some coffee plants also suffer from lower amounts of water resulting in coffee beans
that are perhaps one-third the size of normal beans and prices that are less than one-half what
they would be under normal weather conditions. In the worst conditions, coffee trees also die.
In a pilot project supported by the Ford Foundation, the Vietnam insurance regulator has
approved a drought business interruption insurance product designed to compensate for the
consequential losses associated with severe drought conditions. A traditional crop insurance
product would only pay for crop-yield losses and would not be interesting to these growers.

If practitioners conceptualize weather index insurance as a form of business interruption
insurance to compensate for consequential losses associated with severe weather events, they
could view data constraints and basis risk in a very different fashion, thus influencing their
product design and marketing strategies. In many cases, weather index insurance will be the
first form of weather-related insurance offered in rural areas of lower income countries. The
views of the target market toward the insurance are likely to be significantly influenced by the
marketing and education efforts of practitioners. If practitioners take the view that weather
index insurance is a replacement for crop insurance, it may prevent the target market from
recognizing the full value of the insurance. For example, if the drought insurance product in
Vietnam would have been limited to yield losses only, farmers would likely have reported that
they had means of managing yield losses associated with drought and so had no need for the
insurance. By framing index insurance in a broader context, risk assessment interviews with
Vietnam farmers demonstrated that they were interested in the product.

5.3 SKR Key Recommendations

As an extension of our analyses presented in this SKR and in response to the concerns described
above, we present an alternative approach to the design and marketing of index insurance. How
one frames a problem is critical to finding solutions. We believe that the approaches we
recommend will expand the potential uses of weather index insurance, increase its potential
application in data-constrained regions, and help overcome the cognitive failure problems
described above. We propose the following three main premises, which emerge from our
conceptual development presented above, our own experience with developing index insurance
products, and the empirical findings presented in this document: 1) weather index insurance is
best suited for consequential losses; 2) weather index insurance is best suited for catastrophes;
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and 3) data constraints are lowest for risk aggregator products. These premises are interrelated
and form the basis for much of our current work on index insurance products.

5.3.1 Index Insurance Is for Consequential Losses

Considering weather index insurance as an alternative to traditional crop insurance is an
important first step in the evolution of the weather index insurance market. However, weather
index insurance should now be recast in a much broader context. In short, the ways that
extreme weather events retard economic growth in lower income countries extend far beyond
crop-yield losses. Thus, index insurance products should be designed to protect against the
variety of consequential losses that may occur during the critical period when an extreme
weather event is most likely to occur rather than being designed only around the vulnerabilities
of a specific crop. This product design should make the insurance more relevant to protecting
the wealth positions and portfolio of activities of households and firms. Such an index insurance
product would be designed in an encompassing fashion around the critical periods of the
catastrophic event rather than the key vulnerabilities of a specific crop.

The discussion of consequential losses is quite relevant for risk aggregators as well. For example,
for banks in northern Peru, El Nifo is associated with borrowers having problems repaying their
loans and depositors withdrawing savings. These difficulties create liquidity constraints, increase
provisioning requirements, and cause higher administrative costs. These banks must optimize
between the opportunity cost of maintaining poorly performing loans for months or years after
their maturity date and taking large losses as a result of forgiving these debts. Risk aggregators,
as well, may need assistance in capturing a vision for the variety of benefits associated with
weather index insurance designed for consequential losses of a catastrophic weather risk.

Designing and marketing index insurance in terms of the consequential losses of an extreme
weather event can have several benefits. First, insureds have the flexibility to purchase a sum
insured to manage a variety of risks to which they are exposed. Insureds can use insurance
payments for what they consider most important. The challenge of a heterogeneous target
market is largely addressed by having such a flexible product.

Second, in some cases, such a flexible design may reduce basis risk when compared to weather
index insurance contracts designed for crop yields. As discussed earlier, extreme weather events
are context-specific; even the same weather peril in the same region may differ significantly
from one event to the next, resulting in different types of loss across events. While the target
market may expect to experience several types of loss associated with a catastrophic event, it is
often unclear how the event will affect specific aspects of the wealth position and the portfolio
of activities. Thus, a more general product designed to allow the insured to address a host of
potential problems may more suitably match losses of the target market than a product based
on one specific investment outcome such as crop yield.

Third, weather index insurance designed around consequential losses likely creates a much
greater recognition of the value of index insurance among the target market than insurance
designed around one crop. To determine the sum insured and potential uses of the insurance,
practitioners marketing these products are likely to engage in a rich discussion with stakeholders
in the target market regarding their exposure to the event and improving their strategies for
managing consequences of the event.

e 59
JESYe%
S

G’Sﬁiﬁg'ﬁkk



State of Knowledge Report — Data Requirements for the Design of Weather Index Insurance
Chapter 5 State of Practice: Evaluation of Current Index Insurance Program Practices in Meeting
Customer Demands and Overcoming Data Constraints

Fourth, a focus on consequential losses also has important data implications. In particular,
practitioners need not be so concerned about proving high in-sample correlations between the
proposed index and yields for a specific crop. Instead, high-quality qualitative data obtained
through carefully structured interactions with local experts are likely to be more useful for
understanding the relationship between the index and the variety of consequential losses.

Finally, a design based on consequential losses would likely also increase demand for the
insurance. We use a simplified version of the conceptual model from Chapter 1 to illustrate. For
weather index insurance designed and marketed for a specific crop, individuals would be asked
to determine the level of insurance they would like to purchase based on the weather risk for
that crop

n

E(U)grop = ( Zn J u(w, +R, —pl)+ Y mUW, +R, —YL; —pl +q;1)
i—1

where 7; is the probability of a specific bad weather outcome, W, is initial wealth, Ryis the net
return on investment in good years for all activities including, but not limited to, net returns for
the specific crop, pis the premium rate, / is the sum insured, YL, is the monetary value of yield

losses associated with a specific bad weather outcome, and g, is the insurance indemnity rate

associated with a specific bad weather outcome. Notice that in this model individuals are
considering yield losses as the only negative consequence of the bad weather outcome.

Alternatively, consider a weather index insurance contract designed and marketed based on the
many consequences of an extreme weather event. Suppose that, beyond yield losses YL;, the

insured also experiences asset losses AL, (e.g., losing property, home equipment, savings, etc.),
health losses HL ;, reduced profits due to increased costs PL;, losses in other labor opportunities
LL; (e.g., decreased employment in labor on other farms), and other losses OL; associated with
the disaster. In this case, individuals would make their insurance purchasing decisions based on

E(U Disaster :[ Z]‘[ J (WO +Rg _pl)

n
+ > mUW, + Ry — YL, — AL — HL, —PL; — LL; —OL, — pl + ;1)
=1

The optimal level of insurance can be determined by taking the first derivative of the expected
utility function with respect to |, setting this derivative equal to zero and solving for | . So for the
crop-specific product

aE(U)Cmp [ i ] 6U(W0 +R, —pl) o P)Zn:”' oUW, + R, =YL, —pl +q;1) _
] ] 6/

i=1
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while for the consequential loss product

aE(U)Disaster — (_p)[ Zn:n_ ]aU(WO + R B pl)

ol

0 oUW, +R, —YL; — AL, —HL; —PL, —LL; —OL; — pl + q;I
o3 Mt Al P 0 pr )

i=1

The optimal sum insured depends on several factors (e.g., premium rate, magnitude and
frequency of losses, basis risk, etc.), but the most relevant for this discussion is the recognition
of consequential losses. To see this, note that, if the sum insured is the same, then equations for
the crop-specific product and the consequential loss product are the same, except in bad years,
ending wealth, and thus the utility, is lower for consequential loss product. The only way to
increase wealth in the bad years for the consequential loss product is by increasing the sum
insured. But increasing the sum insured also decreases wealth in the good years because the
premium cost increases. However, by definition, risk-averse decision makers (and only risk-
averse decision makers would purchase insurance) value additional wealth in the bad years
(from receiving an indemnity) more than the loss of wealth in the good years (from paying the
premium). More formally, for risk-averse decision makers, the marginal utility of wealth is
higher in bad years than in good years (risk aversion implies concave utility functions or
diminishing marginal utility of wealth). So considering not just yield loss but also other
consequential losses should increase the sum insured.

Thus, this model suggests that individuals would be expected to have higher demand for index
insurance if the insurance were designed and marketed not just to protect against crop-yield
losses but also for the various other consequential losses of an extreme weather event. The
model actually demonstrates a simple notion — if buyers can see that an insurance product can
be used to protect against more types of losses, they will be willing to purchase more of the
insurance.

5.3.2 Index Insurance Is for Catastrophes

There are at least two interesting data issues that relate to the question of whether index
insurance should be used to protect against moderate loss events or only against catastrophic
loss events. The first focuses on the variability of returns from a business’s or household's
portfolio of activities. We hypothesize that the pairwise covariances of returns among the
various activities are not linear throughout all possible weather outcomes.”® Specifically, we
believe that the covariance of returns is greater for more extreme weather events. In other
words, steps to diversify a portfolio by investing in several activities may be ineffective for
extreme weather events. If so, this further supports our view that weather index insurance
should focus primarily on addressing the range of consequential losses that result from
catastrophic weather events.

Second, we hypothesize that the spatial covariance of some weather variables is not linear with
respect to severity. A specific research agenda motivated by this SKR examines whether the

*® Miranda develops a conceptual model to investigate these questions further. That model is presented
in Appendix A. We plan to test this model with some empirical examples in the United States, where good
data are widely available.
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spatial correlation of drought or excess rainfall increases with severity. If spatial correlations do
increase with severity, this suggests that the spatial specificity of data required for developing
index insurance that protects against moderate loss events is greater than that required for
developing index insurance that protects against catastrophic, extreme loss events.

A number of important research questions emerge from our concerns regarding the design of
products that pay for frequent, moderate, losses. The dilemma remains that of the index
insurance products developed thus far, most are designed to pay for losses that occur more
frequently than 1 in 7 years. Users of these products express a strong preference to be paid
frequently. While this may indicate they will gain more confidence in the product if they can see
payments being made, we have raised questions about how long this confidence will last if they
experience a large percentage of small payments and only a moderate payment when there is a
catastrophe. Again, there is a clear tradeoff of premium. The tendency is to purchase a low sum
insured given the higher price for a product that pays frequently. We tested this explicitly with
livestock index insurance in Mongolia. Herders were given a choice between two policies; one
that would pay when mortality rates exceeded 6 percent and one that would pay when
mortality rates exceeded 10 percent. The premium rate was nearly 2 times higher for the 6
percent threshold than for the 10 percent threshold. Some educational effort was targeted at
getting the herders to take the 10 percent catastrophic policy because with the same total
premium they could purchase a higher sum insured given that the typical purchase was for only
30 percent of the value of animals. Yet, in the one year that this experiment was run, over 90
percent of the insured herders selected the 6 percent threshold policy. Similarly, many of those
purchasing health insurance select low deductibles or co-payments rather than catastrophic
health insurance. A counterexample seems to occur with life insurance. People in lower income
countries are demonstrating a clear willingness to pay for market-based life insurance, which
protects against a low-frequency, catastrophic event. Considerably more work is needed on the
psychology of insurance purchase decisions, but it is interesting that life insurance protects
against shocks to long-term wealth caused by loss of an important human asset.

The psychology and behavioral economics literatures clearly indicate that how people
conceptualize an uncertain outcome (e.g., a loss, variable returns, a gamble, etc.) affects their
strategies for managing it (Kahneman and Tversky, 1979). This research leads us to the
conclusion that individuals likely evaluate risks to their long-term wealth positions (i.e., risks that
affect the well-being and future opportunities of the household) differently from risks to current
period returns (e.g., crop-yield risks). Many of the index insurance pilots have been marketed as
a sort of pseudo crop insurance — that is, a way to reduce the variability in returns for a specific
activity. Given the highly diversified portfolios of many households (and firms) in lower income
countries, crop-yield losses in a single year may not significantly affect long-term wealth. If this
is true, it is not surprising, given that insurance is a relatively expensive financial mechanism,
that households would lose interest in insuring against weather risks designed to protect crop
production.

In contrast, catastrophic insurance is about preserving the long-term wealth position of the
household. By framing weather index insurance as protecting long-term wealth, it becomes
much more akin to life insurance. As a starting point, we return to our expected utility theory
model.” It seems consistent with the behavioral economics literature on framing that

?! psychology and behavioral economics researchers are often critical of an expected utility framework
and provide many other suggestions for modeling the way individuals assess uncertain outcomes (e.g.,
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individuals may use different utility functions based on how the problem is framed —
specifically, individuals may have one utility function for wealth v, and another for net

investment returns U We postulate that individuals may be more risk averse to losses in

returns *
their long-term wealth position, losses that may mean a lower quality of life for themselves or
their family, than to losses in current period returns for a specific activity (i.e.,
aZUwealth aZUreturns H H i H
< > -<0 where D is the total dollar value of the terms in the utility function).
oD oD
Thus, we can rewrite our expected utility model without insurance as

{ Z Tt J[ wealth )+ Ureturns (Rg )]

+ z m; [uwea,th (Wo — AL, —HL; — 0L )+ Ureturns (Rg —YL; — PL; —LL; —OL’ )]
i=1

where OL”is all other losses in wealth experienced by the individual and OL is all other losses in

current period returns experienced by the individual. Where does insurance fit into this model?
We again suggest that it depends on how the insurance is designed and framed to the target
market (Kahneman and Tversky, 1979). When individuals are more risk averse to losses in
wealth than to losses in returns, they will purchase more insurance when they expect it to
protect their wealth position than if they expect it to protect their net returns on investment.
More directly, individuals are likely to have a higher demand for weather index insurance if it is
intended to protect against catastrophic risks that threaten the long-term well-being of the
household than if it protects only against current period returns.

Thus, designing and marketing index insurance for catastrophes may overcome the demand
problems experienced by some weather index insurance pilots. Furthermore, it may be that if
insureds believe that they are protected from such a disaster, they will be more likely to change
their behaviors in the fashion predicted by insurance theory — engaging in higher-risk, higher-
return activities that would contribute to increased growth in household wealth in the long term
(Barnett, Barrett, and Skees, 2008).

5.3.3 Data Constraints are Lowest for Risk Aggregator Products

This report highlights the importance of risk aggregator products, especially in data-constrained
regions.”” To reiterate, products for these firms require assessment of a catastrophic weather
event at a community or regional level, whereas household products require an assessment of
the weather event at a specific geographic point. As a result, the risk aggregator product
requires fewer data sources (e.g., fewer weather stations) in a region than products for
households. As demonstrated by Ali, Lebel, and Amani (2005), combining the estimation of

Kahneman and Tversky, 1979; Quiggin, 1991). These researchers identify many biases that influence risk-
taking behavior (e.g., judgment bias, hindsight bias, availability heuristics, gambler fallacy, etc.). We
believe that future research on weather index insurance should more fully integrate these paradigms.

2 This topic is directly addressed in Section 4.2.1. Data Constraints Are Less Binding for Risk Aggregator
Products than Household Products, following the general review of weather station infrastructure in
lower income countries.
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several weather stations tends to lower estimation error of the weather event more than using
a single weather station. Thus, basis risk associated with mismatches between the cause of loss
and the index (cause of loss €= index) should be reduced. In sum, risk aggregator products
should require a less developed weather station infrastructure and increase opportunities for
satellite-based products.

Risk aggregator products are likely the only feasible mechanism for extending weather index
insurance into many regions of the world. Because weather station infrastructure is so
underdeveloped in many regions of the world (WMO, 2008) and satellite data are too coarse for
many household risks (with a few notable exceptions), household products are simply
inadvisable in many regions. Pursuing weather index insurance products for households despite
inadequate data is likely to lead to 1) higher insurance prices by insurers and reinsurers due to
uncertainty about the risk, and 2) products that poorly capture the risk of the target market and
therefore contribute little to disaster risk management. As a result, risk aggregator products
would seem to provide a better return on investment for economic development efforts in data
constrained regions.

Some practitioners may question whether products designed for risk aggregators such as rural
banks and agricultural value chain members substantially benefit the poor and would rather see
insurance products that can be purchased by households. It is worth remembering that the
highest poverty rates in lower income countries almost always occur in rural areas. While there
are certainly risk aggregating firms that will only work with better-off households, many
financial institutions, agricultural value chain members, etc., do work with poor populations.
Moreover, one reason that some risk aggregator firms limit the services they provide to the
poor is that they cannot manage the catastrophic weather risk associated with serving these
clients. As we ourselves consider this question, we return to the risk management axiom: when
losses occur, someone must pay for them. For example, households may pay banks higher
interest rates because the bank is unable to efficiently manage the catastrophic risk exposure in
the region. Also, agricultural input suppliers, commodity processors, and lenders alike may limit
their presence in regions where households are vulnerable to catastrophic risk because these
risk aggregators are unable to manage this correlated risk themselves. Weather index insurance
products for risk aggregators that enhance the ability of these firms to manage catastrophic risk
can increase household access to the services of these firms. Increased access to credit, inputs
that increase crop productivity, and commodity export markets have all been shown to have
important developmental outcomes (World Bank, 2007) and are the ultimate goal of many
development projects.

An added benefit of working with risk aggregators is that these stakeholders, due to their
professional experiences, could be expected to engage in a risk management discussion in a
more sophisticated way than households. These firms seem prepared to understand weather
index insurance more fully as they likely already use other financial contracts to manage risks.
For example, banks coordinate bond holdings, interbank debt, loan maturity, certificates of
deposit, etc., in asset-liability management. Also, commodity exporters often use forward (and
sometimes futures) contracts. As a result, these risk aggregators may be more comfortable with
evaluating weather index insurance contracts, and may also have more knowledge and

T 64
JESYe%
S

G’Sﬁiﬁg'ﬁkk



State of Knowledge Report — Data Requirements for the Design of Weather Index Insurance
Chapter 5 State of Practice: Evaluation of Current Index Insurance Program Practices in Meeting
Customer Demands and Overcoming Data Constraints

experience with managing basis risk.?* Since data requirements for risk aggregator products are
relatively low and the market is relatively sophisticated, the potential for products using satellite
data increases. Opportunities emerge for products that either: 1) use information from atypical
sources (e.g., infrared sensors on orbiting satellites); or 2) integrate information from a variety
of sources to create an index (combining data from weather station, satellite, SST, etc.). More
sophisticated buyers should also be in a stronger position to understand more complex models
that use combined data to capture the underlying catastrophic risk.

5.3.4 Summary of the Key Premises for Our Recommended Framework

In closing this discussion, we recommend a framework based on the three key premises: 1)
weather index insurance is for consequential losses; 2) weather index insurance is for
catastrophes; and 3) data constraints are lowest for risk aggregator products. We suggest that
this framework be considered priorities that guide a process for developing sustainable
insurance markets for disaster risks. Weather index insurance products addressing the
consequential losses of catastrophic risks that improve the ability of risk aggregators to serve
the poor may be a cost-effective entry point for new weather index insurance markets. Starting
with risk aggregator products that cover consequential losses for disasters creates a foundation
for future insurance products by building capacity among local insurers, the insurance regulator,
and the target market. This foundation may also motivate data system investments as insurance
awareness increases and local stakeholders develop a vision for extending products to other
firms and to households.

We recognize that in some regions, conditions may motivate practitioners to deviate from the
above recommendations — e.g., the presence of rich data sources, very specialized agricultural
production, highly spatially correlated weather risk, etc. We are certain that there are many
special cases where sound economic thinking and consideration of the data constraints should
motivate a departure from these recommendations. Rather, the recommendations are general
guidelines and are borne out of our evaluation of significant data constraints and of our goal of
making weather index insurance more efficient, effective, sustainable, and scalable to more
regions.

2 Weather index insurance products for risk aggregators are typically designed with a small number of
firms as the potential target market so it is much more feasible to address the specific needs for capacity
building of each potential buyer.
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This SKR discusses data needs for weather index insurance and the challenges associated with
offering index insurance in data sparse environments. We began this investigation with the
recognition that, after several years and many pilot projects, practitioners, donors, and
researchers are still searching for effective models to make weather index insurance scalable
and sustainable. Index insurance has captured the attention of many new donors and new
groups are venturing into the technically difficult process of index insurance product
development. These stakeholders seem to recognize the several positive aspects of index
insurance, but a number of unanswered questions exist that should rightly concern donors and
multilateral agencies. For example:

1. Weather index insurance products have often been conducted as one-off
demonstrations and, in some cases, have not clearly identified how these activities tie to
a coherent framework of reducing poverty or developing sustainable markets. What
implementation models should the development community prioritize for index
insurance to enhance its effectiveness for increasing economic stability and long-term
growth?

2. Throughout some regions of the world, including much of Africa, data constraints limit
the development of weather index insurance products. These regions are often among
those that could benefit the most from improved disaster risk management. The same
data that can be used for index insurance will clearly also enhance disaster risk
management efforts on a broader scale. Nonetheless, without investments in the
establishing and maintaining data systems, it is not clear how index insurance can be
developed and scaled in these regions.

3. Some of the index insurance products that currently appear to be gaining traction have
been in regions where households engage in highly specialized means of production. For
example, Mongolia relies so heavily on livestock production that it has an annual
livestock mortality census. Many lessons can be learned from the Mongolia experience
(e.g., designing markets and social programs so that they are complementary), but its
data source is likely unique to Mongolia. As another example, index insurance in Malawi
has been designed around specialty crops (e.g., tobacco) with vertically integrated value
chains. Yet, we know that many of the world’s poor do not engage in specialized
agricultural production. How can these models be extended to reach more potential
insureds?

4. Finance and economic theories suggest that index insurance is best suited for protecting
against long-term wealth impacts of extreme natural disasters. Yet, based on their
experiences, some practitioners have concluded that households will only remain
interested in insurance if it covers moderate risks so that insureds receive frequent
indemnities. How can index insurance markets be sustainable if theory posits that
extreme risks should be prioritized while experience indicates households prefer
insurance for moderate risks?

It is critical that these hard questions be addressed. Currently, index insurance is on the pathway
of innovation. Proof of concept is only part of the innovation process. Next, it is imperative that
products be designed that appeal to a wide range of stakeholders; otherwise, index insurance
will not be scalable or sustainable. If donors believe the theoretical foundations and the models
for implementation are sound, then further investments may lead to more effective and
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efficient models in the future. Yet, donor investments must be tempered by opportunity cost
given the many unmet development needs. Thus, priority should be given to models of index
insurance that seem likely to lead toward something that is efficient, effective, scalable, and
sustainable.

Our initial intention in this document was to discuss how to assess and overcome data
constraints to index insurance. Given the data constraints that we encountered as our
investigation advanced and given our own experience with index insurance, we soon learned
that we could not analyze and discuss data constraints in the absence of product design issues.
Product design is predominantly affected by two important factors: 1) data constraints; and, 2)
the practitioner’s conceptual model for how index insurance contributes to economic growth.
Implementation models with relatively high data requirements will not generally be scalable;
models that seem to have a relatively minor effect on economic growth will not generally be
sustainable. Our journey of review and analysis, which began long before writing this document,
leads us to recommend three areas of focus for product design: consequential losses,
catastrophes, and risk aggregator products (see conclusion of Chapter 5). We believe that these
three areas of focus both reduce data constraints and are generally the best means for index
insurance to contribute to economic growth. We recognize that our three recommendations run
counter to most approaches that have been used in implementing index insurance to date.
While these recommendations are grounded in theory and based on our experiences, we also
recognize that they need to be tested more widely and rigorously.

In the next two years, our team will perform research with regard to some of the questions and
research areas we put forth in Section 6.1. Our second SKR focuses on legal and regulatory
component of developing weather index insurance, in particular, the legal and regulatory
challenges of creating index insurance products designed to protect against consequential
losses. We have experience designing consequential loss index products in two very different
jurisdictions: Peru and Vietnam. The third SKR focuses on evaluating the scalability and
sustainability of index insurance products. When our project is complete, we intend to integrate
key analyses, recommendations, and themes from all SKRs into a single document to advance
the ideas presented in the individual SKRs. While we hope to make our own contributions to the
research needed to more fully understand the potential role of index insurance in helping lift
rural people out of poverty, our efforts will not exhaust the researchable questions. Thus, we
intend to widely distribute our work so as to motivate additional research on these important
questions.

6.1 Research Questions Surrounding Demand for Index Insurance

Given our view that many important questions regarding the demand for index insurance are
critical to understanding data needs, we develop the following important areas for research:

1. Will framing index insurance around the many consequential losses of a weather
event (not just yield losses) increase demand? It seems rather obvious that decision
makers are likely to purchase more insurance if the insurance product protects against
more of their potential losses. But is it also possible that decision makers are more risk
averse for some losses caused by extreme weather than they are for other losses? For
example, decision makers may exhibit higher risk aversion with regard to loss events
that destroy assets and thus affect the growth path of long-term wealth than they do to
loss events that affect only some portion of current period net returns.
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6.2

Will framing index insurance as catastrophe insurance to protect against reductions in
long-term wealth increase demand? We have noted a common concern among
practitioners that buyers will lose interest in weather index insurance unless they
receive frequent indemnities. While there is certainly some research on the psychology
of risk that would support this view, there is also widespread empirical evidence that
people routinely purchase various types of insurance that will rarely pay an indemnity
because the insurance protects against very low probability loss events (e.g., life
insurance, flight insurance, earthquake insurance). Based, in part, on some of the
psychology and behavioral economics literatures, we hypothesize that demand for
weather index insurance depends in part on how the underlying risk problem is framed.
There are many possible explanations for framing effects. As mentioned previously,
decision makers may exhibit higher risk aversion with regard to loss events that destroy
assets and thus affect the long-term trajectory of wealth accumulation than they do to
loss events that affect only some portion of current period net returns. In addition,
behavioral economists and psychologists have demonstrated that decision makers
employ many biases and heuristics (e.g., judgment bias, hindsight bias, availability
heuristics, and gambler’s fallacy) in making risky decisions. Perhaps the nature of these
biases and heuristics vary depending on whether the risky decision is defined in terms of
wealth or annual returns (Quiggen, 1991; Quggin and Horowitz, 1995). This is another
important area of research.

A related research question emerges from our concerns regarding the long term
sustainability of insurance products that pay more frequently. To what extent will
experience with small and frequent payments for moderate losses and low payments
for catastrophic events dampen the demand for these products over time?

How will buyers react to index insurance products based on novel data sources? As
more complex models are developed using a combination of data sources, research will
also be needed to assess buyer response to insurance products based on such novel
data systems. This research should assess buyer response across different target
markets (e.g., households, risk aggregators, etc.). We have argued that risk aggregators
may be in a better position to understand sophisticated modeling efforts that lead to
more complex indexes. Some analysis of potential buyer response has been conducted
as part of the product development for an NDVI product in northern Kenya (Chantarat
et al., 2009). To our knowledge, no other buyer response to satellite-based index
insurance products has been conducted. Additionally, no fieldwork has been conducted
comparing reactions to satellite-based index insurance products across different target
markets.

Research Questions Surrounding Data

Because basis risk is such an important issue with index insurance, we first propose four
different avenues of research pertaining to basis risk and product design.

6.2.1

1.

Research Questions: What Product Designs Might Reduce Basis Risk?

Does the spatial distribution of specific weather events change depending on the
severity of the event? This is a question of the physical presentation of weather. As we
have suggested at various points in this SKR, it seems likely that for some weather
events the spatial covariance is higher for more extreme weather occurrences. The
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results of Bravar and Kavvas (1991) seem to support a hypothesis that extreme drought
conditions are more spatially covariate than moderate drought conditions. This implies
that an index insurance product designed to protect against drought would have lower
basis risk for extreme droughts than for moderate droughts. This, in turn, has important
implications for weather index insurance design, especially in data-sparse environments.
Ultimately, this question requires good empirical research that employs advanced
statistical procedures. We need to better understand the spatial presentation of
weather variables and how that changes depending on the severity of a weather event.
Appendix A describes an emerging research agenda designed to address these issues.

2. Does the relationship between a specific weather event and realized losses change
depending on the severity of the weather event? Said differently, is the covariance
between severe weather events and severe losses higher than the covariance between
moderate weather events and moderate losses? This is a question of the physical
processes underlying losses. The classic discussion of basis risk implicitly assumes that
the covariance between a weather index and the realized loss is linear throughout the
range of outcomes — that is, that the beta coefficient does not vary with the severity of
the weather event. Again, the research findings on this question would have important
implications for weather index insurance design.

3. Does the covariance in investment returns change depending on the severity of the
weather event? We have hypothesized that the covariance of returns across the
activities in a diversified portfolio often increases when severe weather events occur. Of
course, this depends on the activities in the portfolio and how geographically
concentrated they are. For example, if households have a family member working in
another region and providing remittances, these returns would be unaffected by local
weather events. Still, rural households invest in many activities exposed to the same
extreme weather risks. For example, drought affects all rain-fed crops, reducing farm
yields but also limiting opportunities for employment on other farms. At the community
level, these aggregated losses hurt local businesses as well. If the covariance in returns is
highest during extreme weather events, it is an indication that portfolio diversification is
least effective under these conditions. Such an outcome would support using insurance
to protect against extreme events and other risk management strategies, such as
diversification, to protect against more moderate loss events.

4. How does designing index insurance for consequential losses rather than for specific
crops tend to affect basis risk? This is a question of the physical presentation of the
disaster. For example, is a specific level of excess rainfall a better estimator of one type
of loss (low crop yields) or several types of losses (low crop yields, reduced small
business revenues, property damage)? This is a difficult question, and the answer will
depend in part on the risk and the context. Keeping in mind that most index insurance
products are developed around a single index, the answer also depends on the
correlation in the estimation error across losses. Finance theory on portfolio
management will help demonstrate principles underlying this problem and the effects
this correlation has on designing appropriate index insurance products.

6.2.2 Other Research Areas on Data Issues

Beyond the research questions targeted to learning more about how product design may reduce
basis risks, there are several other research areas around data issues that merit attention.
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1. Improved risk assessment and qualitative data to enhance development of index
insurance. We have argued that qualitative data obtained from scientifically informed
risk assessment procedures with key stakeholders may be equally if not more valuable
than detailed historic data. In large part, this argument is based on both data constraints
and the critical need to focus on infrequent catastrophic events. We have made it clear
that even in situations where twenty or thirty years of loss data are available, these data
may be inadequate for understanding the consequences of extreme and infrequent
events. Such data also provide little or no information regarding how risk exposure may
have changed (e.g., due to infrastructure investments, changes in production strategies,
etc.). Some in the economic research community are quick to dismiss qualitative data as
being “unscientific.” Are there rigorous ways to examine using high quality but short
time series of data to evaluate an extreme risk problem versus using qualitative data?
How can protocols be improved to enhance the quality of risk assessment data for index
insurance product development?

2. Research that evaluates the value of emerging data systems needs to be supported.
While it is beyond our expertise, we place a high value on research that is being
conducted to evaluate more efficient and accurate systems of weather data. In this
document we raised questions about the sustainability and scalability of ground level
instruments for measuring weather variables. Due to the current limited availability of
weather stations, we have emphasized that novel data sources will likely be required to
significantly increase the number of weather index insurance products offered in lower
income countries. In particular, we have focused on satellite-based sources of
vegetation and weather data. The underlying index for a weather index insurance
product might be based exclusively on data from one of these satellite-based sources or
might be based on a combination of satellite-based and ground-based (e.g., weather
station) data sources. However, many questions remain about the novel data sources.
Much research is needed to determine where, and for what variables, satellite-based
data are likely to provide the most accurate measurements. For example, challenges
exist with building consistent time series of data across different time periods due to
changes in technology, satellite drift and aging of sensors. Higher spatial resolutions will
likely be required for satellite-based data to support many types of index insurance
offers. All of the cautions we raise about overfitting for simpler index insurance products
could also apply to those developing more complex models that use a combination of
data systems.

3. Identifying regions where estimates of oceanic anomalies such as ENSO can improve
weather risk transfer. Many of the examples presented in this SKR have been based on
our ongoing work developing ENSO-based insurance in Peru (see Appendix B for more
description of this work). Oceanic anomalies can affect weather outcomes over large
geographic areas. For example, ENSO affects weather in parts of South America, Central
America, North America, and Australia but also affects weather in parts of Africa and
Asia (Funk et al., 2003; McPhaden, 2003). Their widespread impact makes oceanic
anomalies interesting candidates for weather index insurance but there is still much to
learn. We have documented a strong relationship between sea surface temperatures off
the coast of Peru and flooding in northern Peru due to El Nifio. But how do ENSO
measures affect other regions? What is the magnitude of the basis risk between ENSO
measures and realized losses and (as discussed previously) does the magnitude of the
basis risk depend on the severity of the oceanic anomaly? To what extent are extreme
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weather events on the African continent associated with oceanic temperature
anomalies measured in the north Atlantic or in the Gulf of Guinea? Are they strong
enough to develop forecast insurance similar to what was developed in Peru?

4. ldentifying other potential indexes that could be used to make insurance payments
before weather-induced loss events occur. One of the interesting aspects of our
ongoing work with El Nifio Insurance in Peru is that extreme sea surface temperatures in
November and December are indicators of flooding that generally does not occur until
February or March. Thus, with an index insurance product based on sea surface
temperature payments can be made before the extreme losses occur. We are calling this
forecast insurance and, as we develop in Appendix B, this form of insurance can fit in the
legal and regulatory environment as a form of consequential loss insurance.
Policyholders can use the indemnities to fund loss mitigation efforts before flooding
actually begins. There are significant economic efficiencies associated with policyholders
being able to use indemnities to proactively prepare for a loss event rather than simply
using the funds to recover after the loss occurs. Are there other regions of the world
where oceanic anomalies or other measures could be used to make insurance payments
before severe losses occur?
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Even in developed countries with sophisticated financial systems, financial market innovation is
typically a long and slow process. The challenges are even greater in lower income countries
where only the most basic financial services are available outside of major urban areas. Weather
index insurance is an innovative financial instrument that holds great promise for helping
decision makers in lower income countries manage their exposure to extreme weather events.
Though the conceptual underpinnings of weather index insurance are rather simple and
straightforward, the real-world application of those ideas can be extremely difficult. This SKR
demonstrates that many of these difficulties are the result of data limitations.

Weather index insurance emerged from the need to develop agricultural insurance products
that could be delivered to small-scale farmers in rural areas of lower income countries. After
years of effort and failed experiments, development economists in the 1970s and 1980s
essentially gave up trying to develop traditional crop insurance products for small-scale farmers
in lower income countries. In the late 1990s a renewed interest in agricultural insurance for
lower income countries stimulated research on weather index insurance as an alternative to
traditional crop insurance. Since then, pilot programs have been instituted in several countries.

Despite about a dozen years of conceptualizing and working toward pilot programs and
experimentation, market-based weather index insurance has still not been scaled to a significant
level. While there are many reasons for this, data constraints are among the most important. A
challenge for scaling up weather index insurance is that weather stations are generally quite
sparse in rural areas of lower income countries. Furthermore, while there can be many
developmental benefits to improving weather information systems within a country, the cost of
installing and maintaining a sufficient density of weather stations specifically to support index
insurance offers is likely prohibitive.

Alternative sources of weather data, generally collected from satellite platforms, have become
available over recent decades. While these sources currently lack the spatial and/or temporal
specificity required for many types of index insurance offers, the technologies are improving
rapidly. At some point in the not too distant future, it may be feasible to base weather index
insurance offers on weather measures collected from satellite-based platforms. More likely,
weather measures will be available that integrate limited weather station data with more
abundant data from alternative sources such as satellites. These advancements in sources of
weather data will likely be spurred by developments in the market for weather index insurance.
A comparison with the history of catastrophic modeling for earthquakes and hurricanes is
insightful. Some thirty years ago insurers and reinsurers were challenged by the data and
sophisticated modeling required to understand the underlying risk associated with insuring
these major catastrophes. Academics from Stanford University were among the first to offer
modeling services that met this emerging need. In 1988, the firm, Risk Management Solutions,
emerged from these efforts. Others followed. There is evidence that a similar process is
underway with weather index insurance modeling as part of the natural progression of market
innovation.

While a number of techniques can be used in data-sparse environments to model relationships
between weather variables and realized losses, we advise practitioners to exercise caution in
utilizing these techniques. For example, when weather index insurance is targeted to losses for a
specific crop, practitioners sometimes fit complex statistical relationships between the limited
available weather data and crop-yield data. In so doing, they can show that the index “explains”
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a large part of the in-sample variability in crop yields. A concern with such approaches is that
statistical relationships determined by overfitting the limited available in-sample data may not
be supported when out of sample. Policyholders, who have been promised that the index is
highly correlated with crop yield, are likely to end up being disappointed, frustrated, and,
potentially, worse off for buying the insurance.

When few or no loss data are available, practitioners have sometimes used crop growth
simulation models to determine relationships between weather variables and yield losses. A
concern with this approach is that these models are parameterized for very specific crop
varieties and regions. One cannot simply assume that the parameters contained in the models
are generalizable to other crop varieties, regions, or farming practices. Also, while crop growth
models are quite useful for estimating the effects of a change in a variable around the central
tendency of the distribution, they are much less useful for predicting the effects of extreme
weather events on yields — and it is just such extreme weather events that are the primary
focus of weather index insurance.

We recommend a risk assessment process that utilizes both the limited available quantitative
data and qualitative information collected from local sources. Those who have lived through
previous extreme events tend to have a clearer picture of how households and businesses in the
region were affected by those events. This risk assessment process operates under the
recognition that weather risk and resulting losses occur in a larger system affected by many
components: household livelihood strategies, geography, weather patterns, population
dynamics, industry growth, cultural values, etc. As practitioners develop an understanding of
risk in the local context, themes are likely to emerge that guide priorities in product
development.

Our experience with developing index insurance products and our evaluations of other such
efforts, have led us to three major recommendations regarding the role of index insurance in
economic development efforts.

1) Weather index insurance is for consequential losses. Risk assessments indicate
extreme weather events affect households and firms in many ways, reducing returns on
investments (e.g., lower yields, reduced labor opportunities) and wealth positions (e.g.,
asset losses, household consumption demands). If weather index insurance is designed
for a single aspect of the household portfolio of investments (e.g., crop risk), it may be
of limited value to households. Because weather index insurance may be offered in
regions where the target market has no previous experience with insurance, the onus is
on practitioners to identify the needs of the target market through risk assessments and
to design and market products with a vision for the ways in which extreme weather
events are impeding growth for the target market.

2) Weather index insurance is for catastrophic risk.2* Significant empirical evidence
indicates that natural disasters can have extreme and long-term effects on poor
households. The risk of low frequency, high severity, weather events can significantly
hinder economic development. Insurance is a relatively expensive instrument so it is

?* The focus of this SKR has been on developing market-based index insurance. Nevertheless, we
acknowledge that an appropriate role for governments and donors may be needed for some catastrophic
risk. GlobalAgRisk has made significant contributions to new thinking in this regard with our work in
Mongolia.
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best used to transfer extreme risks that cannot be managed using other methods. Other
instruments such as savings and credit are more efficient mechanisms for managing
moderate risks. Moreover, it seems likely that basis risk is higher for moderate weather
risks than for extreme weather risks.

3) Data constraints are lowest for risk aggregator products. Risk aggregators such as rural
banks and members of the agricultural value chain can use risk pooling to manage their
exposure to idiosyncratic risks but not their exposure to correlated weather risks. Thus,
they tend to limit the services they provide in rural areas that are highly exposed to
correlated weather risks. Weather index insurance is only feasible for correlated risks,
making it particularly well-suited for risk aggregators. The data systems required to
support the offer of risk aggregator products also require less spatial specificity than
those required for household insurance products. Therefore, risk aggregator products
are particularly promising for data-constrained regions. Not only could these products
potentially be supported by limited weather station infrastructure, but in some cases,
satellite data may be sufficient.

We note that these recommendations address issues of index insurance product development
and marketing, which may seem unusual in a document purportedly about data. However, as
we have tried to emphasize throughout this document, data issues cannot be meaningfully
separated from product development and marketing. Data limitations will inform what types of
products are most feasible and for what target markets. Likewise, data requirements are always
contextual and depend on the nature of the index insurance product being developed, its target
market and application.

In closing, our analyses indicate that weather index insurance investments should be prioritized
toward natural disaster risks that are likely to be impeding economic growth for poor
households. These products are likely most effective if designed for the many consequential
losses the target market experiences during a disaster — a much broader vision for weather
index insurance than practitioners’ historical focus on a specific crop, and, a considerable
divergence from the practices of insuring moderate risks. Weather index insurance products
that improve the ability of risk aggregators to serve the poor is consistent with this vision and
may be a cost-effective entry point for new weather index insurance markets, especially in data-
constrained regions. Starting with risk aggregator products that cover consequential losses for
disasters creates a foundation for future insurance products by building capacity among local
insurers, the insurance regulator, and the target market. This foundation may also motivate data
system investments as insurance awareness increases and local stakeholders develop a vision
for extending products to other firms and to households. In the long term, increased product
offerings and target market specialization may create the way for a variety of new insurance
products.
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New Approaches for Index Insurance — El Nifio Insurance in Peru

It is now possible for stakeholders in Peru to purchase a new form of insurance that pays in early
January before catastrophic flooding created by an extreme El Nifio begins in February through
April in the northern regions of Peru. The El Nifo Insurance product was introduced by a
Peruvian insurance company in 2010. A major global reinsurer carries most of the risk. The
Peruvian insurance regulator approved this insurance in May 2009. This new insurance product
uses the U.S. National Oceanic and Atmospheric Administration (NOAA) measure of sea surface
temperature known as ENSO (El Nifio Southern Oscillation) as the event that triggers payments.
This El Nifio Insurance is the first regulated “forecast index insurance” product in the world.
ENSO information from November and December is used to make payments in January. Opening
the way for forecast insurance could enhance the overall progress associated with developing
index-based insurance products for extreme weather events. Having early payments prior to an
extreme weather event affords the opportunity to prepare and potentially adapt so as to lower
the actual loss.

In recent years, there have been a growing number of pilot tests of index insurance for weather
risk, motivated by an increased understanding of how natural disasters affect developing
countries. Beyond immediate suffering (deaths, destroyed assets, lost income, etc.), the indirect
effects are equally troublesome — economic growth can be disrupted, the poor are thrust into
permanent poverty traps, and the mere presence of these risks constrain access to financial
services and cause many decision makers to pursue low-return, low-risk strategies that impede
economic progress.

Much of the development of index insurance focuses on agriculture, as activities associated with
agriculture remain the primary livelihood strategies for the rural poor in developing countries.
Index insurance uses an objective measure (an index) of a natural event known to cause losses
(e.g., excess or shortfalls in rain, river levels, extreme sea surface temperatures, etc.). Using an
index as a measure of the insured event dispenses with expensive loss assessments of individual
policyholders. Furthermore, moral hazard and adverse selection, problems that plague
traditional forms of insurance, are diminished. Given these advantages, index insurance may be
well-suited to developing countries where data are sparse and delivery of financial services to
smallholder households increases the per-unit cost of traditional insurance.

Despite the promise of index insurance, progress is slow at the micro level. Decision makers in
smallholder households must still be educated about index insurance; demand can be low; cost-
effective systems to sell to smallholder households must be developed; legal and regulatory
systems must be developed, etc. Presently, index insurance may be better suited for risk
aggregators — those lending to farmers, firms in the value chain, and farmer associations.
Focusing first on risk aggregators may also accelerate the potential to build linkages and
sustainable products that will directly serve smallholder households.

Index Insurance Is Suitable for Some Correlated Losses in Developing
Countries

As a precondition of index insurance, losses created by the natural disaster to be insured must
be strongly correlated. A clear measure of correlated losses is when a large number of
individuals and risk aggregators suffer losses at the same time. Correlated losses from natural

e A2
JESYe%
S

G’Sﬁiﬁg'ﬁkk



State of Knowledge Report — Data Requirements for the Design of Weather Index Insurance
Appendix A New Approaches for Index Insurance: ENSO Insurance in Peru
Jerry R. Skees

disasters constrain the development of credit markets for the rural poor, particularly for those
involved in agriculture. Lenders cannot absorb the risk exposure of a large number of borrowers
who may be unable to pay off loans after a major natural disaster.

Likewise, an insurer deciding to write any form of insurance against extreme weather events
must have a means to transfer these risks — generally via a global reinsurer. Insurers in
developing countries rarely have business practices that allow them to access global reinsurers.
If the index being used is fully transparent, the global reinsurer understands the systems that
are used to estimate the index. This is the certainly the case for ENSO measures, which have
been developed for over 50 years by the U.S. agency, NOAA.

Extreme weather events such as drought and flooding can also have associated consequential
losses that extend beyond what traditional crop insurance pays for losses of a specific crop. For
example, in a number of African nations, where owning livestock is a form of savings, extreme
droughts force large numbers of farmers to sell-off their livestock at the same time. These
forced sales depress local prices compounding the losses. Floods and droughts also generally
influence the quality of crops, not just the yields. And, strategies to diversify cropping
enterprises to manage risk can quickly prove ineffective if the drought or floods negatively affect
all of the crops at the same time. Processors, laborers, and any number of local businesses that
depend on local crop production also suffer.

El Nifio Insurance as a Form of Business Interruption Insurance for
Consequential Losses

In Peru, where the El Nifio Insurance is being tested, the consequential losses and problems
associated with extreme rainfall (Figure A1) and catastrophic flooding are enormous — crops
are lost, trees are killed, soils wash away, transportation systems break down, disease problems
(e.g., malaria) increase, and markets are destroyed. When individuals and local markets suffer in
this fashion, it is expected that firms in the value chain and the financial sector will also suffer.

Given the levels of rainfall in the region, it is full understandable why there were major
disruptions in the northern region of Peru (Figure Al). The volume of water in the Piura River
was also about 40 times normal in these two extreme El Nifio years. In 1998, with a clear
indication that El Nifio was coming, farmers simply did not plant crops, resulting in a 27 percent
drop in fertilizer sales in northern Peru. Agricultural lending was growing at a significant pace
before the 1997-98 El Nifio. The growth completely stopped after the event. Microfinance
institutions had a significant increase in problem loans. The total agricultural portfolio for all
MFls in Piura had an increase of over 10 percentage points for loans that were 60 days late or
more. Caja Piura, a leading MFI in Piura, restructured an estimated 3.8 percent of its total loan
portfolio due to this event. Additionally, the major source of capital for the MFls (member
deposits and savings) suffered as people withdrew funds to cope with the problems created by
the event.
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Figure A1 Extreme EIl Nifio Events of 1982/83 : 1997/98

Total January-April Rainfall at CORPAC Piura (1957-2004)

Magnitute Relative to “"Normal"

N TR TR M D N P

1957 1961 1985 1964 1873 1977 1887 1985 14934 18993 1997 2001

Based on an increased understanding of these types of associated problems, the El Nifio
Insurance in Peru was presented to the Peruvian regulator as a form of business interruption
insurance designed to pay for consequential losses that are linked to extreme flooding that is
highly correlated with ENSO. Furthermore, given that extreme ENSO measures in November and
December are clear signals of an impending disaster, it was also accepted that stakeholders such
as microfinance institutions would be incurring additional expenses even before the actual
disastrous flooding begins in February through April. Assessments of the consequential losses,
which are estimated using the ENSO measure, are done before the event. Assessing
consequential losses including business interruptions is extremely difficult; therefore, the form
of loss adjustment for the El Nifio Insurance can be as acceptable to regulators as more
traditional loss assessment processes of business interruptions (e.g., business revenue losses
created by an event like a building fire that disrupts normal business). There is precedent for
special forms of insurance referred to as “valued policies.” In the case of valued policies, there is
a pre-agreed value and a pre-agreed event that will create losses. Experience in Peru
demonstrates that index insurance can be presented in the same manner. These were
important developments in properly positioning index insurance in the legal and regulatory
environment.

The El Nifio Insurance uses the monthly SST for ENSO Region 1.2 (0-10°South, 90°West-
80°West), measured and reported by the NOAA Climate Prediction Center (CPC, 2010). The basis
for payment is the average of two months — November and December. Payments begin when
this measure exceeds 24.5 degrees Celsius, and payments reach a maximum when the measure
reaches 27 degrees. The payout function is linear between these two temperatures. Thus, the
payout rate’ is calculated as:

? Using this calculation, the payout rate in 1998 would have been 71 percent of sum insured.
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(ENSOIndex — 24.5)
(27 —24.5)

PayoutRate =

The insured selects the sum insured. Indemnity payments are made by multiplying the payout
rate times the sum insured. The selection of sum insured should be based on a risk assessment
that estimates the largest losses that may occur under the worst flooding event. The regulator
could require documentation of these estimates to serve as the maximum value of insurance
allowed. Prudent insureds will be more likely to select a value that is less than these estimates
given the expense of this type of catastrophe insurance.

Since the El Nifio Insurance pays before the catastrophe, educational efforts and workshops
have been focused on helping the target markets understand how they might use the extra cash
to mitigate the impending crisis to the extent possible. Farmer associations in remote regions of
Piura, Peru, have expressed an interest in using the funds to clear drainage systems. Lenders are
interested in using payments to ease the liquidity crisis as they work with problem loans at the
same time that they see reductions in savings and deposits. Those in the value chain are
interested in smoothing their losses. The El Nifio Insurance is also being presented to local and
regional governments to provide ready cash that may be able to mitigate some of the problems
that are certain to emerge with catastrophic flooding.

At this stage, the El Nifio Insurance is not being made available to smallholder households.
However, the product can be tied to other financial services in a fashion that give smallholders
greater access to these services at better prices. Targeting the El Nifio Insurance to the risk
aggregator first has proven a highly valuable exercise. The interest and involvement of the
Peruvian financial regulators increases the potential that a sustainable index insurance product
is being developed.
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Abstract

This technical report addresses various issues pertaining to the sta-
tistical methods used in index insurance product design and market
development. Conventional actuarial methods based on univariate loss
claim models are of limited applicability to index insurance because,
unlike conventional insurance, index insurance indemnities are based,
not on the verifiable losses, but rather a distinct random variable, the
index. Statistical methods commonly used by economists to assess the
potential demand for index insurance are also found wanting because of
their reliance on linear correlation analysis, which is incapable of cap-
turing nonlinear dependencies that may exist at the relevant extremes
of the index and loss distributions. We propose novel approaches to the
actuarial analysis of index insurance products based on copulas. Cop-
ulas are especially well-suited for capturing the complex dependencies
that exist among extreme values of jointly distributed random vari-
ables, but remain little used by economists to analyze index insurance
products.



1 Introduction

There are many issues that arise when assessing whether existing data and
data collection practices are adequate to support index insurance product
design and market development. Some issues are practical in nature. For
example, to develop an index insurance product one must ask: Are data for
candidate indices and insurable losses available, and, if so, are they readily
accessible? Have the data been reliably collected and recorded in accordance
with internationally recognized standards? Will data in the future be col-
lected in a secure manner that will command the confidence of the insurer
and the insured that index insurance indemnity payments will be settled in
a transparent, fair, and timely manner?

However, there are also technical issues that arise when assessing the ad-
equacy of data for index insurance product design and market development.
From a purely actuarial perspective, available data are adequate only if they
support accurate computation of actuarial statistics of interest to the insurer
and the insured. For example, the expectation of the indemnities to be paid
by an index insurance contract must be estimated as the first step in setting
the premium. The standard error of the expected indemnity estimate must
also be computed to allow the insurer to appropriately load the premium
for parametric uncertainty. The probability distribution of indemnity pay-
ments for a portfolio of index insurance contracts must be derived in order
to compute the maximum probable loss for an insurer’s book of business.
And how well indemnities track the losses of the insured must be reliably
estimated to assess the potential demand for an index insurance product.

The precision with which these actuarial computations can be performed,
and thus the adequacy of existing data, ultimately depend on the joint dis-
tributions of indices and losses and the statistical methods used to model
them. Actuaries have developed a broad range of statistical techniques to
model loss claim distributions based primarily on univariate statistical mod-
els that assume independence across claims. Univariate statistical methods,
however, are of limited use in the analysis of index insurance contracts. With
an index insurance contract, the variable used to determine indemnities, the
index, is distinct from losses. Also, sets of indices, such as a rainfalls at differ-
ent locations within a defined geographical area, usually exhibit correlation
due to systemic weather effects, making the assumption of independence
untenable for index insurance portfolio analysis and undesirable for efficient
premium rate computation.

Economists have performed a substantial number statistical studies that
have raised doubts about value of index insurance as a risk management tool.



The primary criticism of index insurance is that it is possible for the insured
to suffer a loss yet not receive an indemnity. The potential severity of this
problem, often referred to as “basis risk”, is typically measured empirically
using the Pearson linear correlation coefficient, a statistical measure of the
degree of linear dependence that exists between a pair of random variables.
Linear correlation coeflicients between losses and indices, however, are un-
reliable measures of basis risk for two reasons. First, the linear correlation
coefficient between an index and insurable losses may be low, even though
the index and the losses are strongly related, but in a nonlinear fashion. In
these instances, basis risk can be substantially reduced through the use of
an appropriate nonlinear indemnity schedule. Second, index insurance con-
tracts provide indemnities only for extreme losses associated with extreme
values of the index. The relationship between extreme values of losses and an
index could be strong, yet be missed because an empirical linear correlation
coefficient weighs all observations equally.

Actuarial assessments of index insurance products call for the use of mul-
tivariate statistical methods that can faithfully capture the distributional
dependence that exists among indices and between specific indices and in-
surable losses, particularly in the extremes of the distributions. Copulas,
which provide a flexible theoretical framework for capturing dependence
among random variables, are well-suited for this task. Financial analysts
began to take a strong interest in copulas in the wake of the financial crisis
of 2007-9 ([1], [9], [11], [12], [18], [22], [28]; [6]). As a result of the crisis,
financial analysts began to ask whether stock returns are more highly cor-
related during financial crises than in normal times, thus rendering stock
portfolios riskier than predicted by conventional asset pricing models. The
questions of interest to financial analysts are very similar to those that must
be addressed in index insurance design: in both cases, one is concerned with
the degree of dependence exhibited by multiple random variables at the ex-
tremes of their joint distribution. Copulas provide a formal framework for
addressing questions such as these. However, copulas remain little used in
index insurance applications.

In what follows we review the basic features of copulas and notions of
dependence that are relevant to index insurance analysis. We survey com-
mon copula structures and related empirical methods and discuss how they
might be adapted and extended to the actuarial analysis of index insurance
products. We also propose a series of empirical applications that can il-
lustrate and test the utility of copula methods in index insurance product
design and market development.



2 Copulas

A copula is a function that describes how univariate marginal distributions
are “coupled” together to form a multivariate distribution ([10]; [24]; [29];
[30]; [14]). Formally, an n-dimensional copula is a joint cumulative distribu-
tion function of n interdependent random variables, each of which, on the
margin, is uniformly distributed on the unit interval [25]. Alternatively, an
n-dimensional copula may be defined as a function C on the n-dimensional
unit cube [0,1]", with values in the unit interval [0,1], that satisfies the
following conditions:

C(u) =
e C(u) = u; whenever all but the i
C(u)

= 0 whenever at least one component of u equals zero;

th component of u equals 1;

[0, 1.

assigns nonnegative probability to any m-dimensional cube in

The role that copulas play in capturing the interdependency among
jointly distributed random variables is explained by Sklar’s Theorem. Sklar’s
Theorem states that any continuous n-dimensional cumulative distribution
function F' : " — [0, 1] can be uniquely written

F(:L'l,l'z, e ,l’n) = C(Fl(l‘l), FQ(JTQ), e ,Fn(IL‘n))

where C' is an n-dimensional copula and Fj is the " marginal cumulative
distribution function associated with F'. Conversely, if C' is an n-dimensional
copula and F; : ® — [0, 1] are univariate cumulative distribution functions,
then F' as defined above is a cumulative distribution function on R™ with
marginal cumulative distributions F;. The joint probability density function
associated with a differentiable cumulative distribution function F' can be
recovered from its copula decomposition through the relation

f(x1, 29,0 20) = c(Fi(w1), Fa(22), . . ., Fo(zn)) I, fi(2i)

where ¢ is the joint probability density function associated with C' and f; is
the univariate probability density function associated with F;.

Sklar’s Theorem asserts that any continuous multivariate distribution
can be uniquely described by its marginal distributions and its copula. Cop-
ulas thus provide a general way to represent the dependency among jointly
distributed random variables independently of their marginal behavior.



Copulas are invariant under strictly increasing transformations of the

random variables. That is, if Z1,Z9,...,Z, are n jointly distributed ran-
dom variables with copula C, and ¢1, g2, - . ., g» are strictly increasing func-
tions, then the random variables g1(Z1), g2(Z2), ..., gn(Z,) are also jointly

distributed random variables with copula C'. This implies that copulas cap-
ture dependency among random variables in a scale-free manner without
regard to whether the dependency is linear.

Copulas can be useful in index insurance analysis because they provide
a way to study the dependence among indices and between indices and
losses, without regard to their marginal distributions. In particular, one
is free to specify the forms of marginal distributions independently of one
another and independently of the form of the copula function. For example,
in building a bivariate model of an index and losses, it is possible to posit
that one of the two random variables is log-normally distributed, the other
is beta distributed, and the dependency between the two is captured by
a Clayton copula. This flexibility is particularly useful in index insurance
design, given that there is often no reason to suppose that the index and loss
distributions belong to the same distributional family. The flexibility also
offers the modeler the freedom to search among different copula functions
to find the one that best explains the observed dependency between index
and losses.

3 Parametric Families of Copulas

A number of parametric families of copulas are commonly used in statis-
tical analysis of dependence. So-called “spherical” copulas include copulas
generated by spherical multivariate distributions such as the normal and
Student-t distributions. The Gaussian (e.g., normal) bivariate copula takes
the form

C(ulau%p) = q)p(¢_1(ul)v ¢_1(UQ)), U, U € [07 1]

where @, is the cumulative distribution function of a bivariate standard
normal distribution with correlation p and ¢ is the cumulative distribution
for a univariate standard normal random variable. The Student-t bivariate
copula takes the form

C(Ul,uz;Pa V) = ¢p,u(¢;1(ul)v¢;1(u2))a U, Uz € [Ov 1]

where @, is the cumulative distribution function of a bivariate standard
Student-t distribution with correlation p and v degrees of freedom, and ¢



Family Parameter Yo(t)
Clayton 6> —1,0#0 2(t0-1)

Frank 0 +#0 —log (i;?:ll )
Gumbel 0>1 (—logt)?

Table 1: Archimedean Copula Generator Functions

is the cumulative distribution for a univariate standard Student-t random
variable with v degrees of freedom.

Another widely studied parametric family of copulas are the Archimedean
copulas. A bivariate Archimedean copula takes the form

C(u1, up;0) = ¥y (Yo(ur) + vo(uz)), u1,ug € [0,1]

where 1)y : [0,1] — [0,00] is a continuous, strictly decreasing, convex func-
tion with (1) = 0. The function 1y is called the “generator function”.
Different generator functions give rise to different sub-families of copulas,
of which the three most widely used are the Clayton, Frank, and Gumble
copulas.’ The generator functions for these sub-families of copulas are given
in Table 1.

Another parametric family of copulas that have been used in finan-
cial analysis and may prove applicable to index insurance design are the
“extreme-value” copulas. A bivariate extreme-value copula takes the form

A log(u1)
C(u1,ug; A) = exp (log(ulug)A <log(u1uQ)>>

where A, the called the “Pickands dependence function”. The Pickands
dependence function can be any real-valued convex function defined on the
interval [0,1] such that max(t,1 —¢) < A(t) < 1, t € [0,1]. Different
dependence functions give rise to different sub-families of copulas, of which
the two most widely used are the Marshal-Olkin and Gumbel-Hougaard
copulas. The dependence functions for these sub-families of copulas are
given in Table 2.

One of our objectives in forthcoming research is to study copulas further
in order to identify copulas that are well-suited for index insurance applica-
tions. Many copula structures in addition to those discussed here have found

!Nelsen [25] provides a list of 32 different Archimedean copulas



Family Parameters A(t)

Marshal-Olkin 0<a,f<1 1-—min(ftall—1))
1
Gumbel-Hougaard 0>1 (t9 +(1- t)e) ’

Table 2: Extreme-Value Copula Dependence Functions

application in the financial literature, and the list has been steadily growing
in recent years. As we shall see, not all copulas are capable of capturing the
complex dependence structures that may exist among proposed indices and
between indices and loss distributions of interest. Which copula structures
are best-suited for index insurance analysis will be an empirical question
to be addressed by formal cross-specification tests based on goodness-of-fit
statistics.

4 Dependence

Copulas allow an analyst to isolate, study, and model dependence among a
random variables independently of their marginal distributions. But what
does one mean by “dependence”? How does one measure it? And how does
one best capture it for the purposes of index insurance product design and
market development?

The most widely-used measure of dependence between random variables
is the Pearson linear correlation coeflicient. The linear correlation coefficient
for two random variables & and ¢ is defined by

. Cov(z,7)
\/Var(z)Var(y)

where Cov is the covariance operator and Var is the variance operator. The
linear correlation coefficient is a global measure of linear dependence be-
tween two random variables. Its popularity stems from the fact that for
the widely-used multivariate normal distribution, the linear correlation co-
efficients, together with the parameters of the univariate marginal distribu-
tions, fully characterize the joint distribution. This is true of all spherical
multivariate distributions, including the Student-t distribution, but is not
generally true of non-spherical multivariate distributions.

The linear correlation coefficient attempts to summarize in a single num-
ber the global linear dependence between two random variables. However,




one cannot expect the linear correlation coefficient to adequately summarize
complex dependencies. This is particularly true in the design and analysis
of index insurance products. In index insurance design, one is primarily in-
terested in whether an index and losses are monotonically associated, with-
out regard to whether the association is linear. This so because indemnity
schedules can be specified to be nonlinear, if necessary. Moreover, one is
interested in whether an index and losses are strongly associated at the
relevant extremes of the distributions, without regard to how they are asso-
ciated throughout the remainder of their respective ranges. An index and
losses may exhibit the desirable properties of being strongly monotonically
associated at the relevant extremes, yet possess a very low linear correla-
tion coefficient because the relationship is not strongly linear or global in
scope. As such, linear correlation coefficients are inadequate for insurance
insurance analysis.

More informative measures of association for the purposes of index insur-
ance analysis are the Kendall’s tau and Spearman’s rho measures of associa-
tion.? Kendall’s tau and Spearman’s rho both measure a form of dependence
known as “concordance”. Informally, a pair of random variables are con-
cordant if “large” values of one tend to be associated with “large” values of
the other and “small” values of one with “small” values of the other. Both
measures are invariant under strictly increasing nonlinear transformations of
the random variables, and assess how well an arbitrary monotonic function
can describe the relationship between two variables without requiring the
function to be linear.

Formally, Kendall’s tau is defined for a pair of random variables Z and
7 as

T = Prob{(i“l — ig)(ﬂl — QQ) > O} - PTOb{(jl - j2)(g1 - g2) < 0}

where (Z1,91) and (Z2,72) are independent and identically distributed as
(Z,7).

Spearman’s rho for a pair of random variables & and g is simply the
linear coefficient between their inverse cumulative distribution transforms:

Cov(F; 4(2), F; (7))

" NarE (@) Var(Fy @)

where F, 1 and F, ! are the inverses of the marginal cumulative probability
distributions of £ and g, respectively. Kendall’s tau and Spearman’s rho

2We will adopt the convention suggested by Nelsen [25] and reserve the use of the term
“correlation coefficient” to indicate the Pearson linear correlation coefficient.



Family T Ds

Clayton % Complicated closed form
Frank*  1—4(1-Dy(8)) 1-2(Dy(6) - Ds(0)
Gumbel % No closed form

th

“Di(8) = g Jo o=yt

Table 3: Kendall’s Tau and Spearman’s Rho for Selected Archimedean Cop-
ulas as a Function of the Generator Function Parameter 6.

possess certain features that are desirable for measures of association: Their
values always lie between -1 and 1; they equal zero if the random variables
are independent; they equal 1 if the two random variables are almost surely
related by a strictly increasing function (which may, or may not be linear);
and they equal -1 if the two random variables are almost surely related by
a strictly decreasing function (which may, or may not be linear).

Given that Kendall’s tau, Spearman’s rho, and the copula of two jointly
distributed random variables are invariant under arbitrary strictly increasing
transformations of the underlying variables, it should not come as a surprise
that both Kendall’s tau and Spearman’s rho are fully determined by the
copula of the joint distribution. In general, if two random variables are
related through a copula C, then it can be shown [25] that

T=4 C(’U,l,UQ)dC(ul,UQ) —1
0,1]2

and
Ps = 12/ C(uy,u2)durduy — 3.
[0,1]2

It can also be shown that in the special case that the two random variables
possess an Archimedean copula with generator function ¢, then

[t e®)
T—4/0 (b’(t)dt—i_l'

Table 3 presents Kendall’s tau and Spearman’s rho for the better-known
Archimedean copulas, as functions of the underlying generator function pa-
rameter 6.




Given data, Kendall’s tau and Spearman’s rho can easily be estimated
using their sample counterparts. Given a set of T" joint observations (xy, y;),
t = 1,2,...,T, there are T(T — 1)/2 possible distinct pairings of these
joint observations. A pair (x4, y;) and (zy,yy) are said to be concordant if
(x¢ — xp)(ye — yr) > 0 and discordant if (z; — z¢)(yr — yp) < 0. Kendall’s
tau for this sample is computed as

N, — Ny
T = —
0.57T(T — 1)
where N, is the number of concordant pairs and N, is the number of dis-
cordant pairs. Spearmans’s rho for this sample is computed as

_ Cov(Rank(z), Rank(y;))
v/ Var(Rank(z;))Var(Rank(y;))

where Rank(x;) indicates the rank of the " observation of 2 among all T
observations of  and Rank(y;) indicates the rank of the #'" observation of
y among all T observations of y.

Because index insurance indemnity schedules can be nonlinear, the abil-
ity to write an effective insurance contract for a particular loss distribution
depends ultimately on whether the index and losses exhibit strong monotonic
dependence, not linear dependence. As such, Kendall’s tau and Spearman’s
rho provide measures of association that are superior to Pearson’s linear cor-
relation coefficient for assessing the viability of index insurance contracts.
However, both Kendall’s tau and Spearman’s tau remain global measures
of association that are unable to capture variations in the degrees of depen-
dence throughout the range of the joint distribution, including asymmetries
at the extremes of the distributions.

Efforts to explain asymmetries in dependence at extremes have lead to
the introduction of the notion of tail dependence(]25]; [19]; [5]). Tail de-
pendence generally refers to the degree to which two random variables are
related at the lower or higher extremes of their ranges. Two common mea-
sures of tail dependence are the asymptotic coefficients of lower and upper
tail dependence. The coefficient of lower tail dependence for a pair of ran-
dom variables A; is the limiting probability that one variable takes on a
very low value, given that the other takes on a very low value. Similarly, the
coefficient of upper tail dependence for a pair of random variables Ay is the
limiting probability that one variable takes on a very high value, given that
the other takes on a very high value. Formally, for two random variables %
and 552,

A = lim Pr{ds < Fy ' (u)|#y < 7 (u)}

Ps
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Ay = lim Pr{z; > Ey Nw)|@ > FyNu)}
u—

where I} and F5 are the marginal cumulative distributions of the two ran-
dom variables, respectively. The asymptotic coefficients of tail dependence
for a joint distribution can be recovered from the copula of the joint distri-
bution through

A = lim S0
u—0 u
)\U:hml2u—1+C(1—u,1—u).
u— u

Asymptotic coefficients of tail dependency must be carefully interpreted.
A zero coefficient does not indicate that two random variables are indepen-
dent over tails with positive probability. Rather, a zero coefficient indicates
that the interdependence is weak at the tail and disappears in the limit as the
tail probability goes to zero. For example, the upper and lower asymptotic
coeflicients of tail dependence for two jointly normally distributed random
variables are zero, regardless of their Pearson linear correlation coefficient.
The asymptotic coefficients of tail dependence for two jointly Student-t dis-
tributed random variables are positive, but symmetric, indicating that they
exhibit the same dependence at the lower and upper tails.

The asymptotic coefficients of upper and lower tail dependence for stan-
dard Archimedean copulas as functions of the generator function parameter
0 are presented in Table 4. The copulas differ markedly in their tail depen-
dence. The Clayton copula exhibits lower tail dependence, but not upper
tail dependence. The Gumbel copula exhibits upper tail dependence, but
not lower tail dependence. The Frank copula exhibits neither upper nor
lower tail dependence.

The nature of tail dependence exhibited by the Clayton and Gumbel
copulas are illustrated in Figures 1 and 2. Figure 1 plots the contours of the
joint probability density function of two marginally standard normal random
variables related by a Clayton copula with generator function parameter
f# = 3 and a Gumbel copula with generator function parameter § = 2.5.
As can be seen in the figure, with the Clayton copula, probability mass is
more concentrated around the diagonal at the lower tail than at the upper
tail, indicating lower tail dependence. Conversely, with the Gumbel copula,
probability mass is more concentrated around the diagonal at the upper tail
than at the lower tail, indicating lower upper dependence. Figure 2 plots
simulated scatter diagrams generated by the two distributions.

10



Family AL AU

Clayton 2=% 0
Frank 0 0
Gumbel 0 2-27

Table 4: Lower and Upper Asymptotic Tail Dependence for Archimedean
Copulas

Clayton Gumbel

Figure 1: Probability Density Contour Plots of Two Archimedean Copulas

Whether a proposed index and losses of interest exhibit tail dependence
is of fundamental interest in index insurance design. Suppose, for example,
that one is interested in designing a rainfall index insurance product to ad-
dress losses in income suffered by farmers due to drought. Such a contract
would indemnify the insured for low values of rainfall. As such, the strength
of the lower tail dependence exhibited by rainfall and income would be a
key indicator of the viability of such a contract. If rainfall and income ex-
hibit strong lower tail dependence, as would be the case if their dependence
structure was similar to that of a Clayton copula, then it should be possible
to design an index insurance contract, possibly with a nonlinear indemnity
schedule, that carries acceptably low basis risk, even if the linear correlation
coefficient between the two variables is low. Conversely, if rainfall and in-
come exhibit no or low lower tail dependence, as would be the case if their
dependence structure was similar to that of a Gumbel copula, then it would
be difficult to structure an index insurance contract that would be useful to
farmers as a risk management instrument.

11



Clayton Gumbel
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Figure 2: Simulated Scatter Plots of Two Archimedean Copulas

The nature of tail dependence among a series of indices is also of funda-
mental interest in rating index insurance products. Suppose, for example,
that an insurer proposes to offer a variety of rainfall insurance contracts writ-
ten for rainfalls at different locations within a defined geographical area. If
these indices exhibit lower tail dependence, then they are more highly corre-
lated for extreme low values than for mid-range or extreme high values. This
would imply that the portfolio of the insurer’s indemnity liabilities is risker,
and the insurer’s maximum probable losses would be higher, than would be
indicated by conventional portfolio models based on Gaussian multivariate
models.

5 Estimation of Copulas

We now discuss how to estimate parameters of copulas empirically. To
this end, suppose we have a series of paired observations (x1¢, o), t =
1,2,...,T, that we believe are independent realizations of a data generating
process characterized by a joint cumulative probability function F' that can
be decomposed as

F(x1,12;0, 61, 82) = C(F1(w1; 81), Fa(w2; B2);0)

where (; is a vector of parameters for the marginal distribution F; of z;, and
0 is a dependence parameter of the copula C.

Various estimation procedures based on maximum likelihood principles
are available to estimate copulas. First, if one is not sure about the form of
the marginal distributions, it is possible to estimate the copula’s dependence

12



parameter using the method of pseudo-maximum likelihood suggested by
Genest and Favre [15]:

T
0 = argmax, Z log c(uyy, uat; 0)
t=1
where w;; = index(x;)/(T + 1) and ¢ is the density function of the copula
C.

If one is willing to specify the form of the marginal distributions, it is
possible to estimate the dependence parameter of the copula and the param-
eters of the marginal distributions jointly via the method of full-information
maximum likelihood:

T
(0, 1, B2) = argmaxy 5, 5, Y log f (w1, 24; 6, B1, B2)
=1

where

[(x1,22;0, 81, B2) = c(Fi(w1; Br), Fa(x2; B2); 0) f1(w1; Br) fa(w2; B2)

Here, f is the marginal probability density function of the joint distribution
and f; is the probability density function associated with the cumulative
distribution F; of Z;. Full information maximum likelihood, however, can
be computationally burdensome and is rarely used in practice.

The parameters of the copula and the parameters of the marginals can
also be estimated via limited information maximum likelihood using a two
step procedure. This procedure calls for the parameters of the marginals to
be estimated independently first

T
f; = argmaxg; Z log fi(zit; Bi)
t=1

then using the estimates thus derived to estimate the parameter of the copula
via conditional maximum likelihood

T
f = argmaxy Z log f(z1¢, z2t5 0, B1, B2)

t=1
or, equivalently,
A~ T A A~
0 = argmax, » _log c(Fy (145 41), Fa(wa; B2); 0)
t=1
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This method is sometimes referred to in the literature as the “inference
function for marginals” method ([19]; [21]).

Method-of-moments methods based on sample estimates of Kendall’s
tau are also available ([8]). To estimate the copula parameter, one could
compute the sample Kendall’s tau and invert the relation 6 — 7(6) given in
Table 3 to recover an estimate of the copula parameter . Special methods
for estimating copulas are further discussed in [13], [16], and [17].

6 Selection of Copulas

Another important task in working with copulas in empirical applications is
to choose among various candidate copula types. Goodness-of-fit tests assess
how well a statistical model fits a set of observations. The most widely used
goodness-of-fit tests are the Pearson’s chi-square and Kolmogorov-Smirnov
tests.

The Pearson’s chi-square goodness-of-fit test establishes whether a set
of observations are realizations of a data generating process with cumula-
tive distribution function F. To conduct the test, the range of the data
generating process is divided into n “bins”. One then computes

where O; is the proportion of observations that lie in the i*" bin and E;
is the proportion of observations expected to lie in the i*" bin under the
null hypothesis that the data are generated by a process with cumulative
distribution function F. Under the null hypothesis, the statistic x? is asymp-
totically distributed chi-square with n — 1 degrees of freedom.

The Kolmogorov-Smirnov test is based on the statistic:

Dy, = sup|O(z) — F(z)]

where O(z) = 11(z; < z) represents the empirical cumulative distribution
function and 1(x; < z) is the indicator function. Under the null hypoth-
esis that the data are generated by a process with cumulative distribution
function F, v/nD,, converges asymptotically to the Kolmogorov distribution.

The Akaike Information Criterion (AIC) may be used to chose among

alternative model specifications. In general, the AIC is computed as:

AIC = 2k — 21log(L)
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where k is the number of parameters in the statistical model, and L is
the maximized value of the likelihood function. Given a data set, several
competing models may be compared according to their AIC. The one with
the lowest AIC would be regarded as the best.

Another method for selecting among copulas is attributable to Li. Let

L =T Y = Ui
3 —_— —
fz,y) n;:lK( A h )

denote the kernel estimator based on a set of n paired observations (z;, ;)
of two random variables. Also, let

gj(x7y; 9]) = CJ(FX(‘:C)’FY(Z/); GJ)fX(x)fY(y)

denote fitted probability distributions based on distinct copulas ¢; and cs.
Then the integrated square difference for the two copulas

L= [ () = g5 :07) Py,

may be used to discriminate among candidate copulas, with the one with
the lowest difference providing the best fit.

Various other goodness-of-fit tests have been proposed. For example,
Kolde, Koeidjk, and Verbek [23] suggests tests based on variants of the
Kolmogorov-Smirnov and Anderson-Darling statistics.

7 Spatial Contagion Among Weather Indices: The
Case of Iowa Rainfall

One of the questions I was asked to address for this State of Knowledge
Report is whether spatially separated weather variables commonly used in
index insurance design, such as rainfall at different weather stations within a
defined geographical area, are “more highly correlated at the tails”. There
are a number of papers that have appeared in the finance literature that
have addressed this question in the context of financial asset markets, where
the phenomenon of high correlation at the tails is refereed to as “spatial
contagion” ([2], [3], [4], [7]). Spatial contagion in the context of index insur-
ance, however, has not been, to our knowledge, addressed in the agricultural
economics literature.

Spatial contagion is an important question in the design of index in-
surance products for two reasons. First, suppose an insurer offers a range
of index insurance contracts written on weather variables, say, rainfalls, at
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different locations in a defined geographical area. The insurer will be inter-
ested in assessing the distribution of payouts of his entire portfolio of index
insurance contracts in order to calculate the maximum probable loss asso-
ciated with his entire book of business. If the underlying weather variables
exhibit spatial contagion, then standard portfolio risk assessment methods
based explicitly or implicitly on normal distribution theory could result in
serious underestimates of the riskiness of the portfolio, leaving the insurer
exposed to greater business risk than he realizes.

Second, an important task in index insurance design is to compute the
expected indemnity associated with a given indemnity schedule. Indemni-
ties, however, are paid only when the index falls below a certain threshold,
an event that occurs only infrequently. As such, the data available to sup-
port the calculation of this critical statistic is usually very limited. One way
to address the paucity of data is to estimate the expected indemnities of
multiple contracts jointly. This should lead to gains in efficiency that will
depend primarily on the degree of dependence exhibited at the critical ex-
tremes of the underlying index distributions. In other words, in the presence
of spatial contagion, it may be possible to achieve substantial gains in effi-
ciency by jointly estimating the expected indemnities of various contracts,
provided the tail dependencies are faithfully captured.

For our first case study, we propose assess the degree of spatial contagion
exhibited by Iowa June and July county-level rainfalls, employing data for
all 99 Iowa counties from 1954-2008 obtained from National Climatic Data
Center (NCDC). For our second case study, we propose assess the degree of
spatial contagion exhibited by growing seasons rainfalls in Northwest Peru.
We will employ a variety of methods, including a test proposed by Nelsen
[25], structural econometric estimation, and copula function estimation.

7.1 Kendall’s Tau Test

Suppose we have a series of paired observations (z1:,z2;) on two random
variables 1 and Zs. Whether the two random variables are more highly
correlated at the lower tails of their distributions than at the upper tail of
their distributions may be tested using a method developed by Nelsen [25]
that compares Kedall’s correlation coefficient computed for subsamples of
lower and upper tail observations:

e sort the paired observations (z1:, z9;) according to the values z1y;

e delete the n/4 observations in the middle, partitioning the observations
into two sets of equal size, one containing the lower ranked observations
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and one containing the higher ranked observations;

e compute the Kendall correlation coefficients for each subset of obser-
vations, 77, and 77, and set D = 17 — 7.

For large samples, D is normally distributed, allowing us to test the
hypothesis Hy : 77 = 71 against the alternative H4 : 7y < 71 using a one-
tailed test. Due to the limited amount of data, the standard error of the
estimate will be computed using bootstrapping methods.

We will test the hypothesis of asymmetric lower and upper tail correla-
tions among Iowa rainfalls following one of two procedures. Either we will
perform this test for all 4851 possible pairs of counties in Iowa, or we will
limit the test to counties and their contiguous neighbors. Regardless of the
method chosen, I will report the number of tests that result in rejection of
the null hypothesis.

7.2 Structural Spatial Econometric Analysis

A second approach to testing for spacial contagion will employ more con-
ventional structural spatial econometric estimation methods. The approach
would begin by positing that rainfall y;; in county ¢ in year ¢ are generated
as

Yit = a; + Bize + €3

where the €;; are serially independent zero-mean normal variates and z; is a
systemic factor that affects rainfalls in all counties, for which Iowa state-wide
average rainfall will be used as a proxy.

We will posit that the variance-covariance structure of the idiosyncratic
error terms €;;, conditional on the the systemic factor z;, are given by

Var(ei) = o2z
and
007“7’(6#, ejt) = p(d(ia J)a Zt)

where d(i, 7) is the distance between county ¢ and county j. Higher correla-
tion at the lower tail of the distribution would be indicated if p is decreasing
in z.

17



7.3 Copula Analysis

A third approach would employ copulas. Specifically, I will search among
various candidate copulas and, using goodness of fitness tests, attempt to
identify the copula structures that best explain the nature of dependence
between adjacent county rainfall series. If tail symmetry can be rejected in
favor of lower tail dependence in most county pairs, spatial contagion will
be said to exist among lowa county-level rainfalls. Copulas to be tested in-
clude the Gaussian, Student-t, Clayton, Gumbel, Frank, extreme-value, and
possibly others. Vine copulas, pair coputals, and hierarchial Archimedean
copulas will also be examined ([20]; [27]; [26]).

We will also attempt to fit some candidate mixture distributions. For
example, the Clayton copula exhibits strong lower tail dependence and the
Gumbel copula exhibits strong upper tail dependence. Neither is, on its own,
exhibits the flexibility to capture varying relative degrees of upper and lower
tail dependence. Thus, we propose to estimate a mixture of the Clayton and
Gumbel copulas.

C(ur, ug; pt, 01,62) = pCh(ur, ug; 01) + (1 — p)Co(ur, ug; 61)

where C7 indicates the Clayton copula with dependence parameter #; and
(5 indicates the Gumbel copula with dependence parameter 65.

8 Copulas in Index Insurance Product Design

Our primary objective will be to explore effective uses of copula methods
for designing and analyzing index insurance products. In particular, we are
interested in developing a protocol for designing and analyzing index in-
surance products that is scalable and adaptable to a wide variety of index
insurance design settings. We intend to produce suitable computer code,
written in Matlab, that will perform the necessary computations for arbi-
trary index and loss data series. We will illustrate the use of these methods
in two settings: rainfall insurance for Henan Province, China and rainfall
insurance for the Department of Piura, Peru.

Essential actuarial computations required in the design of index insur-
ance products include estimating the expected indemnity (i.g., fair premium
rate) associated with a hypothetical index insurance contract, computing an
approximate standard error surrounding the expected indemnity estimate,
and measuring basis risk.

We propose the following general procedure. Formally, let & denote a
given index, call it “rainfall”, and let § denote an indicator of income, call
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it “yields”. We are given a hypothetical indemnity schedule f(z;«) that
specifies the indemnity to be paid in terms of the observed index z and a
vector of contract parameters «. Given T observations on rainfall x; and
yields y;, we construct a model of the joint distribution of Z and 7 using a
selected parametric copula family. Given the fitted distribution, we compute
an estimate of the expected indemnity

m(a) = Ef(%; o)

and then compute an estimate of its standard error using bootstrapping prin-
ciples. We the posit a utility of wealth function u, and compute willingness
to pay w(a) by numerically solving the nonlinear inequality

Eu(y) = Eu(y + f(Z,a) — w).

Given a procedure to estimate the fair premium and the willingness to
pay, we search for an optimal design, that is, for an optimal value of the
contract parameters «, by maximizing willingness to pay w(«) subject to
constraint m(a) = 7* where 7* is a target fair premium level, say 10%.

The approach above can be repeated under different assumptions regard-
ing the underlying dependency between rainfall and yields. In particular,
one can perform the procedure using conventional assumptions of symmetric
tail dependence and then allowing for varying degrees of tail dependence.
A hypothesis to be tested is that conventional approaches lead to signifi-
cant underestimates of the value of index insurance due to the incidence of
substantial lower tail dependency.
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Climate Indices and Global
Teleconnections: Review of State of
Knowledge and Potential Utility for Index
Insurance

Abstract

Index insurance is a potentially useful risk transfer mechanism, at least at a regional aggregation level
where basis risk associated with individual exposure is less of an issue. In this setting, climate extremes
are often determined by extremes in atmospheric circulation attributes that lead to the advection or
blockage of moisture to the region of interest, or to persistent conditions that allow extreme hot or cold
temperatures to develop. Even extreme wind anomalies are often related to changes in large scale
atmospheric circulation. Atmospheric circulation anomalies are in turn driven by identifiable spatio-
temporal patterns of surface temperature. Given their relatively slower evolution, Sea Surface
temperatures (SSTs) are often considered the “carrier” of the climate information. Thus, an entire set of
regional weather (e.g., precipitation, temperature, wind) extremes could in concept be related to
specific SST patterns. Consequently, some attention has been focused on understanding how seasonal
and inter-annual climate evolution may be related to specific SST or atmospheric circulation indices. The
current state of knowledge of these teleconnections at a global scale is reviewed here with the
perspective of the potential use of some of the well known climate indices as a concurrent or as a
predictive surrogate index for regional weather. The ability to assess these indices, their predictability,
and the predictability of the associated weather extreme in a region, using publicly available information
that cannot be easily manipulated by the intended beneficiaries are considered. Given that climate data
quality and availability are highly variable across the globe, the readily available analyses are either
specific to certain regions (e.g., the USA) where the investigators have access to high resolution and
long data records, or are directed at commonly available global climate data parameters that are often
established by spatial interpolation across a sparse data set. Here, we provide only an overview of
analyses that have been conducted globally, since a comprehensive review across local /regional
literature requires considerable investment of time. Even though many of the regional analyses have
been published in peer reviewed journals, there is a need to evaluate the quality of the analysis as well
as the specific assessment. Given the context provided by this review, a perspective on analyses that can
be conducted at a regional level to develop suitable climate indices is presented.
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Introduction and overview

This note explores whether and how a routinely available climate index can be used for hemispheric to
global or even as a regional index for the purposes of weather index insurance. The basic idea is that
there are several well established, routinely updated and reported indices of selected climate
parameters that may inform weather extremes over large land areas, at least in terms of seasonal
probabilities of exceedance, and perhaps even with respect to event attributes. The index could be a)
concurrent, or for the season in which the weather extremes are a concern, or b) predictive, i.e.,
computed prior to the beginning of the season of concern. Ideally, the index would be well correlated
with the variable (e.g., precipitation or temperature, as represented by a drought or flood, or cold or
heat waves) of regional interest. Since the index may be based on a remote teleconnections, prior
analyses would establish how the index is to be quantitatively mapped to specific outcomes in different
regions, and the attendant uncertainty, for each type of weather extreme or impact. We recognize that
the use of an index that applies to many regions provides unique opportunities for the design of index
insurance products and risk reduction for the insurance provider. However, broad based indices may
expose the purchaser of index insurance to high basis risk, since their outcomes may or may not map
well to the large scale index. Consequently, we consider regional banks or loan providers or
governments or other aggregators as the target beneficiaries of the proposed insurance, rather than
individual farmers. With this context in mind, this section briefly discusses the potential indices and
summarizes some key recommendations. A more detailed discussion of the correlation of the indices
with potential regional outcomes, and of related index design issues is provided in the next section.

At approximately the beginning of the 20" century, it was already recognized that global
teleconnections or spatial relationships in atmospheric pressure existed. Often these were persistent
and anomalous patterns that led to drought or floods in specific regions, and recurred with almost the
same frequency. The modern discovery of the El Nino Southern Oscillation (ENSO) attributed to Sir
Gilbert Walker, a British meteorologist in India is a prime example of such phenomena. During the El
Nino phase of the oscillation, the central to eastern equatorial Pacific Ocean is anomalously warm, with
a coincident shift in the location of the low pressure center, and of tropical convection. Sir Walker
established that such conditions translated into drought over India, while the opposite side of the
oscillation, La Nina corresponding to anomalously warm conditions in the Western Pacific, led to floods
in India. His work was also able to establish some broader global connections with the ENSO
phenomena. Today, the understanding of this phenomenon has been advanced significantly: the way in
which these conditions evolve and recur, as well as the nature of its global teleconnections to
precipitation and temperature variations has been established to a degree. Even so, over all land areas
this phenomena explains only about 20% of the inter-annual variations in rainfall and temperature if a
linear relationship between key indices and the observed precipitation is used (Mason and Goddard,
2001). However, most of these “climate shifts” are associated with extreme conditions at the locations
impacted. Thus, climate indices associated with ENSO may be potentially useful for index insurance. The
understanding of ENSO impacts and their prediction continues to be an open research area. This is due
in part to the complexity of global climate dynamics, which is manifest through the nonlinear interaction
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of a variety of phenomena at multiple time scales. The understanding of the physics of these
phenomena and their interactions continues to be incomplete. Thus, when we hear that no two ENSO
events are alike, either in their duration, intensity or predictability or in their subsequent impact,
implicitly we are told that the interactions with other climate processes may lead to differences in the
global manifestation of what is characterized as an El Nino or La Nina event.

Some of the commonly identified climate indices that have at least hemispheric teleconnections, and
their characteristic recurrence intervals or frequency of occurrence, predictability and a brief description
are presented in Table 1 and Figure 1. A general review article on climate teleconnections is presented
by Nigam (2003). Given the relatively short climate records that are available, by and large only linear
analyses of the individual connections of these indices with global precipitation and temperature data
fields have been pursued. The ENSO phenomenon is the most studied, and its modulation by the PDO
has been discussed. Typically, the longer the average recurrence interval of the phenomenon, the more
likely that it modulates the effect or occurrence of a phenomenon that occurs more often. Also, the
longer the time scale, the longer the climate shift and the associated change in the nature of the climate
impacts. However, there is some evidence that these shifts may translate into an increased frequency of
specific climate impacts (drought vs flood, hot vs cold spells), but may have a limited contribution to the
direct, inter-annual variance explained for precipitation and temperature in a given region.

In the context of index insurance for precipitation, temperature or wind, i.e., weather variables, that
have a time scale of evolution of hours to days to months, given their time scale of variation, it is not
clear that these indices will connect directly to event intensity and duration attributes. The situation is
further compounded by the fact that the temporal variation of these indices and the associated spatial
expression of their teleconnections are typically modulated by indices that are characteristically lower
frequency. This implies that the independent effects of each index on the weather extremes of interest
are even harder to isolate, and that even the combined effect will likely be nonlinear. As a matter of
fact, it is unlikely that the direct linear correlation of any of these indices with regional weather
extremes will be particularly high. Most of the analyses presented in the literature consider a
correlation of seasonal precipitation and temperature with the index, or consider the composite
“average” of the regional conditions for an extreme end of the oscillation (e.g., El Nino or La Nina event),
or consider probability of exceedance of a specific percentile of regional rainfall or temperature
conditional on the exceedance of some percentile of the climate index. Examples of these analyses are
presented in the next section. Unfortunately, these are only indicative of how well a climate index may
relate to regional weather, but are not directly informative as to how well an insurance index using large
scale predictors may be designed for the region.

Page 3



Table 1. Commonly used Climate Indices that at least have hemispherical structure or impact

Phenomenon Indices Recurrence | Predictability Description /Notes
Interval
El Nino Southern | NINO1, NINO1.2,NINO2, NINO3, 3to 7 years Statistical models offer some predictability at lead See saw of SST and atmospheric pressure

Oscillation
(ENSO)

NINO3.4, MEI, BEST, CTI, SOI. All
NINOx.x indices and the CTl are
defined using average SST values
over specific boxes in the equatorial
Pacific Ocean, the SOl is an
atmospheric pressure index, the MEI
and BEST are derived from both SST
and sea level pressure data in the
region

times of 1 to 24 months, while General Circulation
Models (coupled Ocean-Atmosphere) offer
predictability up to 1 year or more. A spring barrier
(April) to prediction is cited by many. Forecasts
made before April often deteriorate for the period
following April. Predictability may increase again for
forecasts made after April. Generally predictability
decreases with lead time. Teleconnections in many
regions are predictable.

between western and central/eastern
Pacific. El Nino and La Nina events persist
typically for a year or so. La Nina typically
follows El Nino. Impacts vary by season and
location. Changes storm track in the sub-
tropics and mid-latitudes. Changes in
location of convection in equatorial and
tropical regions, impact rainfall and
temperature in those regions. Hurricane
birth landfall probabilities may be influenced

North Atlantic
Oscillation
(NAO)

NAO (2 indices) computed as the
difference in atmospheric pressure
over the North West Atlantic (e.g.,
Iceland) and East Central Atlantic
(e.g., Azores or Gibraltar)

8to 12 years

No demonstrated predictability of the index,
despite some claims. Identified predictability of
impacts especially in Northern Europe, Central Asia
and the Middle East, and North Eastern Americas.

See saw of atmospheric pressure between
South Central /Eastern Atlantic and North
Western Atlantic, especially prominent in
Dec-Feb. Significant winter and spring/fall
impacts identified in some regions. Possible
interactions with ENSO and influence on
hurricane probabilities.

Pacific Decadal PDO computed using a Principal 16 to 22 No demonstrated predictability of the index, This pattern is derived from statistical
Oscillation Component Analysis of atmospheric years despite some claims. Identified predictability of analysis of a spatial field, rather than directly
(PDO/IPO) pressure data over the Northern impacts especially in North Asia and North America. | from a simple combination of observed
Pacific, and removing the effects of Evidence of modulation of ENSO impacts. values. Some have argued that the PDO and
ENSO. The Pacific North American Predictability of impacts high particularly when the NAO are part of a common annular
Index (PNA) is a real time index that modeled in conjunction with ENSO. mode of N. Hemispheric circulation. The PDO
is related to the PDO in terms of the is defined in the N. Hemisphere and a similar
spatial hemispheric expression mode called the Interdecadal Pacific
Oscillation (IPO) is also defined. Both
typically influence the mid to high latitude
climate.
Atlantic AMO index defined by detrending N. 60-80 years No known predictability, though some statistical There is some controversy as to whether or
Multidecadal Atlantic SSTs and then averaging the models to detect the shift in the AMO phase have not this is an oscillation or random switching
Oscillation SST over 0 to 66 N in the Atlantic been postulated and tested. Demonstrated changes | of climate regimes. Modulation of other
(AMO) in N hemisphere precipitation and temperature, modes is also noted, and there is also a bi-

especially in the region ranging from N E Brazil to
corresponding regions northwards in Africa, Eurasia
and the Americas

decadal rhythm which may be related to
NAO/PDO
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Figure 1. Time series of indices (using data from http://climexp.knmi.nl/). Left pane =monthly values.

Right pane moving averages (2 years for ENSO, 5 years for all others), 95% confidence interval for the

mean. Note the different characteristic time scales of variation.
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For index insurance applications the following design
indices:

1.

issues are highlighted by the properties of these

The probability distribution of regional weather extremes for a given season is likely to change

systematically and slowly over time. For a region influenced by ENSO/NAO/PDO/AMO,

depending on the phase of the oscillation, conditions may be abnormally wet/dry or warm/cold,

for periods that on average are about 3/4/10/30 years long respectively, if the independent

effects of each mechanism on regional weather are considered. The situation is more complex if

the interactive effects are considered. The implication for index insurance are that :
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Long records are essential for assessing the sensitivity of regional weather to these long
period oscillations. Further, the longer the period of the oscillation that influences
regional weather, the higher the probability that there will be runs of years over which
either there are no payouts from an insurance contract, or of years when there are
significant payouts.

Some investigators may have success modeling the regional weather extremes and
clustered payout processes using long memory models or heavy tailed probability
distributions. Practically this means that in a system influenced by such climate
phenomenon, there is a much higher than expected potential for extreme, persistent
weather events that could be catastrophic. These can be thought to result from the
potential for the superposition of like effects that may result from the individual climate
modes. It is important that such factors be assessed and modeled where possible and
used to design an appropriate risk management strategy.

For all indices, there are regions that are typically positively correlated with the climate index,

and others that are negatively correlated. For the index insurance provider, this offers the

possibility of reducing the aggregate risk of payouts by offering an appropriate balance of

insurance products across these regions. The resulting reduction in payout risk faced by the

provider could be used to reduce the cost of offering insurance products.
There is at least some capacity for ENSO prediction at least a few months ahead. For regions
that have a strong ENSO teleconnection, this has the following implications for index insurance:

a.

Sales of an insurance contract that is based on an ENSO sensitive index defined for the
season of regional weather impact need to be closed prior to the longest possible period
of predictability of the index. The prediction lead times and skill continue to improve, so
the design of the index insurance policy needs to keep this in mind, and re-evaluate the
offerings periodically.

At least in regions where ENSO teleconnections are strong, there is a potential to define
the index insurance contract using an ENSO index for the pre-season conditions. This has
the potential benefit that regional agencies who may need funds to prepare for
upcoming contingencies

For the climate oscillations with the longer periods, there is the possibility of probabilistically
detecting a change in state, and thus predicting a change in the probabilities of weather

extremes in a region with strong teleconnections to that index. The implications for index

insurance are:

a.

There is an opportunity to use insurance rates to communicate the changing risk over
time as identified through these teleconnections. The communication of the changing
risk could potentially lead to changes in lending and hence in user behavior that may
provide an additional level of adaptive risk management to that offered by the index
product directly. The advantage of this communication has to be assessed relative to the
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increase in potential transaction costs and the actual predictable shift in the associated
probability distributions.

b. Since, change detection typically requires at least some data indicating that the change
has taken place, either the index insurance provider and/or the purchaser will face
adverse conditions during the transition period, or the high variance (uncertainty) in the
associated payout structure will need to be accounted for in the premiumes. It is worth
emphasizing that this, as well as other aspects of the implications of structured climate
variability apply not just to index insurance but also to any other risk management
programs that rely on an estimate of the probability distribution of events. The time
varying nature of inter-annual and longer climate risk exposure has been ignored in
past analyses, where stationarity (past represents the future) has been assumed as a
matter of convenience. These factors continue to be relatively ignored in the
anthropogenic climate change debate, where only potential changes in the mean and
variance of regional weather are explored with high uncertainty as part of a carbon
emission scenario, and the quasi-periodic nature of climate and how it may change in
the future may change is not being discussed. While the long term mean and variance of
precipitation and temperature have a bearing on the climate risk exposure, as discussed
earlier, the tail probabilities that mark the risk of extremes are perhaps determined to a
great degree by the potential clustering of events due to multiple time scale quasi-
periodic phenomena. The assessment of how these tail probabilities correspond to
specific climate regimes and the prediction of the upcoming probability of a regime
could potentially be used to better parse and manage climate risk exposure today,
rather than focus on a 2080-2100 climate change scenario.

5. Given the potential for the interaction across the climate modes represented by these indices in
any given region, it is likely that a more effective index would be derived by a statistical
combination of the effects of these indices. The potential nonlinearity adds a layer of complexity
in the derivation of such an index. It is critical that the derivation of this index be relatively
transparent and easy to compute, so that the resulting product and its properties are easily
understood. This suggests that complex, black box statistical models such as artificial neural
networks or even nonparametric regression methods would not be appropriate for developing
such an index. A product that uses categories that represent a combination of threshold
exceedances of 2 or more indices (e.g. NINO3.4 greater than 1.5 and PDO greater than 1.0) to
define a payoff structure could be useful. A parametric regression model with an easily
interpreted equation may also be useful.

Many other indices (e.g., Pacific North American or PNA, or Madden-Julian Oscillation or MJO, or All
India Monsoon rainfall) have also been developed using daily or monthly data on sea level pressure,
outgoing long wave radiation, rainfall or other parameters. These may potentially be much better
related to weather extremes in some regions than the indices introduced here. However, these
indices are in turn modulated by the low frequency climate indices defined earlier. Hence, it is

Page 7



important to preface their potential utility with a discussion of the low frequency climate indicators.
Often, these high frequency climate indices are identified on the basis of explaining a reasonably
large amount of spatial variance in a global or hemispheric analysis, i.e., they have large scale
applicability. This leads to two potential outcomes. First, areas that have publicly available, high
quality, long run data sets, such as N. America, Europe, Australia and India, tend to be unduly
weighted in the analysis and this is reflected in the indices developed. Second, the index explains
some variance almost everywhere, but not as much of the variance in the regional or local time
series as some other index that could in concept be developed for regional applications.

In summary, we offer the following recommendations for index insurance development:

1. For regional applications, it may be best to develop a targeted index that is appropriate for that
region, for either concurrent or predictive index insurance. This index may be developed based
on

a. astatistical relationship between specific local weather extreme data (e.g., duration of
longest dry spell in the season, or heating degree days) and a suite of global climate
indices, or

b. An exploration of the climate factors that influence local weather extremes more
directly and then a relationship of the statistics of local weather extremes to those
variables in the same way.

In either case, Monte Carlos simulations of the temporal variability and uncertainty associated
with the contracts will be needed to assess the effectiveness of the proposed index. The spatial
and temporal distribution of weather extremes within a region would also need to be simulated
so that basis risk issues are better understood. One could use local rainfall or temperature
directly as an index, but this exposes both the user and the provider to high basis risk,
particularly where the index contracts are tied to short records of local data, since these records
will invariably not represent the inter-annual and longer climate variability that has been
discussed in this paper. Hence, an approach that ties local /regional climate records to regional
and hemispheric long climate indices is to be preferred, particularly if the recommendations as
to assessment of the associated uncertainties are followed. The work in Khalil et al (2007)
provides an example of how a regional index can be developed, and its predictability and long
term variability evaluated via simulation.

2. An effort should be pursued to develop regional indices and to assess their long term variability
and predictability in a systematic way across the major regions where offering index insurance is
of interest. By and large, at least 30 to 50 years of regional weather data is available in many
places today. It may be possible to supplement this with longer proxy records in many places. A
strategy for record extension using MERRA, NCAR and ERA40 re-analysis records back to 1948
may be possible globally. Unfortunately, at the regional scale these models do not always
provide very representative results for weather extreme interpolation. However, no systematic
effort has been made so far to develop appropriate global and regional indices of climate
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variation that inform regional weather extremes. Investment of effort in this direction will be
very valuable in assessing what can be done considering both regional and global sources of
information (both data and climate models). As seen in the next section, a fair amount of
knowledge exists with respect to regional correlation of seasonal weather averages with the
leading climate indices. Much less has been done to assess the connection weather extremes.
The specific analyses that should relate to suitability of index insurance applications have been
pursued in very few places indeed, and a ready suite of results for specific statistics of weather
extremes that would best inform the targets of index insurance is currently not available.
Analyses at a nearly global scale may be useful primarily for portfolio management for an index
insurance provider. The global or hemispheric climate indices discussed here vary in their
strength of impact by region. Typically, the magnitude of the global variance explained in
precipitation is much less than for precipitation. Thus, the direct use of these indices for regional
index insurance is not likely to be too useful. As indicated in the first recommendation, some
statistical combination of these indices may indeed be useful for regional analyses. However,
this combination would be regionally specific, and hence a single index could not be directly
applied globally. The most significant utility of the global indices reviewed here is that they
represent rather different time scales of natural climate variability and hence provide a context
for how regional climate and weather extremes may vary over time. The relatively long records
available for these indices permit an exploration of how regional climate in relatively data sparse
regions could possibly change. For instance, in the Sahel region of Africa, precipitation has
undergone nearly a bid-decadal switching regime over the last century, punctuated to an extent
by higher frequency changes in ENSO and SST conditions in the Gulf of Guinea. The use of the
global indices as well as regional climate influences jointly could help diagnose how index
insurance could be applied and monitored. The recommendation is to pursue detailed analyses
of the regional to global teleconnections with the intention of tagging the index insurance and
other risk management strategies to some prediction or possibility of shifts in the operative
regimes, either retrospectively or looking forward. This is important since in many places (e.g.,
Western Australia) a relatively short wet spell of a few years starting in 1998 was viewed as
“breaking the drought”, and conditions have since reverted to those persisting prior to 1998.
Tailoring the index insurance pricing to either the higher variance role in global weather
systems, much of the analyses relate to mid-latitude jet stream related dynamics, or if in the
tropics to ENSO related activity, and more regional influences that interact with the larger signal
but provide more precision to regional outcomes are missed.

Seasonal correlations of global climate indices to regional precipitation

and temperature
Much of the published literature provides either an analysis of the linear correlations of the indices with

regional rainfall and temperature, or an analysis of the regional outcomes that correspond to the

extreme phases of the oscillation represented by each index individually. Sometimes, especially for an
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ENSO index, the probability of exceedance of selected thresholds of rainfall or temperature is also
presented conditional on a threshold of an ENSO index. Unfortunately, the data sets used by the authors
vary and so do the conclusions as to the some of the specific areas and seasons where the
teleconnections are strong. By and large, most of the literature is ENSO related and focused on either
the Americas or S. Asia and Australia, with the NAO connections being described largely for parts of N.
Africa, the middle-east and Europe. Here, we first present a direct analysis of correlation of the indices
discussed in the previous section with seasonal rainfall and temperature using the global gridded 1° by
1°, data set from the Climate Research Unit (CRU) that is usually a benchmark used for many of the IPCC
studies for climate change trend analysis. Several efforts at data quality control and interpolation have
gone into creating the monthly data series at CRU and hence it is useful to examine the results across all
indices and across all seasons for this data set. However, we note, that sparsely sampled areas in Africa,
N. Asia, and S. America will still not be well represented since the gridded data is interpolated from very
limited observations in these locations and filled in over the full century. The presentation of the results
of this analysis is followed by a discussion and a summary of the key features or teleconnections noted
by other authors, including, in the case of ENSO a discussion of some of the conditional probability
analyses. A note to the reader is that when we have investigated specific regional teleconnections, the
best relationships of rainfall and temperature with these indices are typically nonlinear, with an
amplified response as the index anomaly is more extreme and a dampened response as the index
anomaly is closer to its average value. Consequently, the linear correlation analyses presented here
likely understate the potential relationship with the index in such places.

The correlations of each index with seasonally averaged (not extremes) daily maximum and minimum
temperature and rainfall for 4 seasons per year are shown in Figures 2 through 5. For several seasons
and regions, statistically significant (against a null hypothesis with p=0.1 that does not consider memory
or persistence in either series) but relatively modest correlations are indicated. Typically, a physical
connection to a region is meaningful only if a generally large, contiguous region shows a correlation of
the same sign as the index.

ENSO correlations and conditional probabilities:

There are several ENSO indices available. A commonly used one is the NINO3.4 index. This is the one
that was used here for illustrations in Figure 2. For the daily maximum temperature, the correlations are
broadly similar for the Jan-Mar (JFM), Apr-Jun (AMJ) and Oct-Dec (OND) seasons. Typically, the index is
positively correlated with daily maximum temperature in the Northern part of N. America, and across
the equatorial belt around the world in these seasons. It is negatively correlated with daily maximum
temperature in the Southern parts of N. America for these seasons. In the July-Sep (JAS) season, the
daily maximum temperature and NINO3.4 correlations are positive for central and N. Africa and S. Asia
(excluding the Himalayan and northern region) and negative in the Philippines and the Eastern
Indonesian islands. The spatial correlation patterns of the daily minimum temperature with NINO3.4 are
similar to those for daily maximum temperatures, but weaker.
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For seasonally averaged daily precipitation, the NINO3.4 correlations for JFM are negative in North
Western N. America, the Great Lakes, equatorial parts of S. America, S. Africa, Western Australia, and
Indonesia and positive in S. W. N. America and Central Asia. The spatial correlation patterns for AMJ and
OND are similar but with some spatial shifts. In OND, central Eastern S. America is positively correlated.
In JAS, the monsoonal regions of Asia and the Americas, essentially the equatorial and tropical band are
negatively correlated.

The next set of figures from the IRl website (http://iri.columbia.edu) are from Mason and Goddard
(2001). Their analysis was based on the 45 year record of 0.5 by 0.5 degree data set compiled from
12000 stations around world by New et al (1999, 2000). They consider the rainfall data for a given
season to be partitioned into 3 terciles — the upper tercile is termed “above normal”, the middle

“normal” and the lowest one “below normal”. The long term of climatological probability associated
with each tercile are 1/3 by construction. The authors consider 10 years which had positive values of the
NINO3.4 index representing El Nino events of different magnitudes and compute the probability
associated with the above normal and the below normal categories for each season’s rainfall for this set
of years, for each season. Even before reviewing the spatial patterns that result, it is worth noting that
such a plot can be misleading since it is based on a relatively small set of years, and thus has high
uncertainty. However, it is a conditional probability plot relating extremes of seasonal precipitation to a
one sided extreme of the index, and hence is more directly informative as to potential impacts to be
treated by index insurance than the linear correlations presented earlier.

Comparing the shifts in the probabilities for the above and below normal cases, the JFM, AMJ and OND
results are by and large consistent with those one would expect from the linear correlation analysis. The
exception is central Asia, where the below normal category does not undergo a significant change in

|ll

probability but the above normal does, suggesting that the “normal” category has a reduced probability
and the changes are all in the normal and above normal category, i.e., a more subtle shift during El Nino
conditions in that region. For JAS, the results are largely consistent with those seen with the linear
correlation analysis. Mason and Goddard (2001) and the IRl web site also present the results for their
analysis for a composite of La Nina events. The patterns are similar in general but the strength of the
shifts is not usually the same suggesting that there are nonlinearities in the response of seasonal
precipitation to ENSO. The tropical Pacific islands in general demonstrate a stronger response to La Nina
than to El Nino events, but in general La Nina conditions are not as far from normal as El Nino conditions
for most other places. Mason and Goddard (2001) note that only about 20%—-30% of land areas
experience significantly increased probabilities of above- or below-normal seasonal precipitation during
at least some part of the year during El Nino events, and that since different areas are affected at
different times of the year, the fraction of global land affected in any particular season is only about
15%—25%. In their paper they review a large number of past studies on ENSO teleconnections to
seasonal precipitation and find them consistent in general with the patterns reported by them and in
the linear correlation analysis presented here.
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The statistical predictability of ENSO indices is reviewed in Latif et al (1998), Mason and Mimack (2001),
Khalil et al (2007) and most recently by Lima et al (2009). The highest forecasting skills under cross
validation are established by Lima et al. They find that the variance explained in the prediction of the
NINO3.4 and NINO1.2 indices decreases from about 0.8 to 0.9 at 1 month lead time to about 0.5 or
lower at 4 to 6 months lead time by most methods, and may then be less than 0.2 for longer leads
except for their method where they are able to preserve predictive skill for up to 18 months explaining
between 0.2 to 0.5 of the fractional variance of the index. However, their testing period is relatively
short, so these results should be viewed as indicative trends for the potential predictability rather than
as measures of actual predictive skill. It is worth noting that while explaining 0.5 of the fractional
variance in an ENSO index through a forecast may be comparatively impressive, it may not mean much
for practical predictions of a regional insurance index, since the teleconnections of ENSO explain only a
fraction of the variance associated with regional rainfall or temperature. Goddard and Dilley (2005)
compare the relative predictability of seasonal precipitation during ENSO extremes (El Nino and La Nina
years using a ranked probability skill score. This figure is reproduced as the
last visual in Figure 2. Rather modest positive skills are to be noted in most seasons in most locations.

Ill

years) compared to “neutra

Some regions do exhibit strong skills. These locations by and large coincide with those identified earlier
as having statistically significant correlations. Some locations with weak correlations exhibit negative
skill, as may be expected by chance given the short records used.

Where multiple indices are used or nonlinear models are used, it is possible to demonstrate
considerably higher skills for precipitation or streamflow extremes with lead times of a season to a year.
Examples include those in Khalil et al (2007) and Souza et al (2004) and other regionally rather than
globally focused analyses.
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Figure 2: Linear correlation map for each index with 1 latitude and longitude gridded, seasonally averaged weather data, for each of 4
seasons. First with daily max temperature, then daily minimum temperature, and then precipitation. In all cases the monthly CRU data
for weather and for the climate index as available at http://climexp.knmi.nl/ were used. For ENSO probability shifts in precipitation are

also provided.

ENSO correlations: Daily maximum temperature

corr Jan—Mar averaged MINO3.
with Jan-Mar averaged CRU TS3 Tmax IQDI 2005 p<10%

corr Apr—dJun_averagad NINOJ.
with Apr—Jun averaged CRU TS3 Tmax 1901 2005 p<l0%

R S By Tt -
. ;q—:“—%-iii" S h%\‘a x_,—i /-;L‘;ﬁﬁ"_ﬂ""&:““‘”h—-: o8 ‘g’@ r_.-—i\ P Ty
" " AR s 3 — " P el A
" ,?""‘\. A W g B “k.ﬁ‘t{/—\ﬂa M y _'f,: .
Lo b y-f-iﬁ'\’ff t’ﬁﬂ
30N u o S0H "r ?J Sl ‘u" f
\ g WS
' e T A
[24] EQ o F:}ﬁ'_@u..
b “’-rrb;;‘-ff' .
305 305 ; o
y
405 - 605 o
g g ey
uc_-z—‘”"""‘"_"éi uc_-:—‘”“"‘"_"ﬁj——f"" &
| 120 Ly ] GOE 12DE 180 1 120 GO o GOE 120E 180
—ep || ] | | L e— ——pg | | | | 1 | O e—
=46 —=0E&E -0.4 =03 -0.2 0.1 0.3 0.4 a5 XS =&& =05 =04 -0.3 -0z 0.l 0.3 o4 a8 [
. corr Jul-Sep averaged MINGI.4 corr Oct—Dec auveraged MINOJ.4
with Jul=Sep averaged CRU TS3 Tmax 1801:2005 p<10% with Oct=Dec averaged CRU TS3 Tmax 1901:2005 p<10%
R T P oe T N
P e e e
G0N "‘L;f-“ e \:“a& LA o ;{’-’" —og=] BON ? ]
. A o s - . ‘a “‘J‘A - :
~ r19S §° -- N
=
S0H - g S0H a 4
‘\L(.J '1»; g \3_“( \._':.\J e, \ fi
T, h
£ ‘} ‘.‘ '\&‘j t 2] 1\.” ,Q?ﬁ'}?;;\‘e‘
305 ‘;’3 305 L] ‘J
5 F 5 A
405 - 505 -
NI B
e — & e — fny
180 1200 G [} BOE 120E 180 180 120 GO o GOE 120E 180
-l | 1 | | L O e—— —eml | | | | 1 | T e——
-4 —0E  -0.4 -0.3 -0z .2 [E3 o.4 a8 XS -&E  —0EF 0.4 -0.3 -2 0.2 0.3 o4 a8 [

Page 13


http://climexp.knmi.nl/

ENSO correlations: Daily minimum temperature
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ENSO correlations: Daily precipitation

corr Jan—Mar averaged NINO3.4 corr Apr—Jun_averaged NINO3.4
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ENSO probability shifts: seasonal precipitation (from IRI forecast products library, http://iri.columbia.edu, also Mason and Goddard

2001)
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ENSO probability shifts: seasonal precipitation
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Difference in Forecast Skill
Neutral)

o

Differences in skill (Ranked Probability Skill Score) for three categories of seasonal rainfall forecasts
between ENSO extremes and neutral conditions for the 1950-95 period. Positive values indicate higher
skill during ENSO extremes. From Goddard and Dilley (2005)
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NAO correlations

The NAO, also discovered by Sir Gilbert Walker in the 1920s is defined over the N. Atlantic (Hurrell et al,
2001) and is most prominently associated with the winter season (DJF) and spring (MAM) jet stream
dynamics over the N. hemisphere. It is not quite a global index in the sense of an ENSO index. Kushnir et
al (2006) present a recent review of the literature on the NAO and its predictability, including the
potential for interactions with ENSO that may then manifest them in the teleconnections of ENSO or
NAO to regional variability. Kushnir et al indicate that in DJF and MAM there are large areas where 16%—
36% (and above) of the surface temperature and rainfall variance (correlation of 0.4 to 0.6) can be
reconstructed. Typically, whereas ENSO influences the tropics, the NAO influences the mid to high
latitudes. An interesting aspect of the NAO index is its rapid decline in predictability across the season of
the year (it is most persistent in the winter-spring), but its persistence or re-emergence year after year.
Based on the discussion in Kushnir et al, one can understand the NAO as a phenomenon whose center of
activity shifts spatially across the seasonal transition, and hence the usual NAO index as it is computed
best measures the strength of the phenomenon in the DJF and MAM seasons. The SST pattern that
emerges in the other seasons appears to be related to the strength of the DIF/MAM patterns and
subsequently seems to determine the DJF and MAM patterns for the following year. Thus, there is some
hope for NAO prediction over longer time scales, and an explanation of the re-emergence of the
phenomenon across years. This observation also explains the DJF/MAM NAO and ENSO connection to
N. and Central American hurricane landfall incidence noted among others by Elsner et al (2001).

The graphics in Figure 3 for the linear correlations of the seasonal NAO index to the seasonal averages of
daily maximum and minimum temperature, and daily rainfall are quite interesting with large spatially
coherent patterns in the N. Hemisphere. The most prominent season of impact is JFM with OND and
AMJ exhibiting similar but considerably weaker patterns. The NAO index in JFM is negatively correlated
with daily maximum temperature over Iceland, Greenland, N. Africa, the Middle East, W. Asia and N.
India. It is positively correlated with N. E. USA, Europe and N. Asia. The pattern for daily minimum
temperature is similar but weaker. In AMJ, the pattern shrinks to a negative correlation over Greenland
and the S. Mediterranean with a modest positive correlation along the coastal N. Mediterranean. In JAS,
the Mediterranean part of the pattern is all that remains. For precipitation, statistically significant and
spatially coherent relationships are considerably weaker and are manifest only in JFM with positive
correlations over the Scandinavian countries, and the S. Mediterranean, and negative correlations over
N. Mediterranean and the equatorial, central Africa.

A number of authors (e.g, Dugam et al 1997; Chang et al, 2001, Gong and Ho, 2003) have argued for
links between the winter NAO and the subsequent summer Indian and East Asian monsoons, particularly
through a modulation of the ENSO impact. However, others (e.g., DelSole and Shukla, 2002) report that
linear models using ENSO and NAO indices are unable to successfully forecast the Indian monsoon any
better than other predictors in use. On the other hand Wu et al (2009) demonstrate success in
prediction the East Asian summer monsoon using NAO and other predictors.
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Figure 3: NAO correlations

NAO Correlations: Daily maximum Temperature

carr Jan—Mar averaged MAO-Gibraltar corr Apr—dJun averaged NAOQ-Gibroltar
with Jan=Mar averaged CRU TS3 Tmax 1801:2005 p<10% with Apr=Jun averaged CRU TS3 Tmax 1801:2005 p<10%
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NAO Correlations: Daily minimum Temperature

) carr Jan—-Mar averaged NAQ-Gibraltar . corr Apr—Jun averaged NAQ-Gibraltor
with Jan-Mar averaged CRU T53 Tmin 1901:2006 p<10% with Apr=Jun averaged CRU 1S3 Tmin 1901:2006 p<10%

corr Jul—-Sep averaged MAO-Gibraltar corr Oct—Dec averaged NAO-Gibraltar
with Jul=Sep averaged CRU 1S3 Tmin 1901:2008 p<10% with Oct=Dec averaged CRU TS3 Tmin 1901:2006 p<10%
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NAO Correlations: Daily precipitation

corr Jan—Mar averaged NAO-Gibraltar
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PDO correlations

The PDO refers to a see saw pattern in the N. Pacific Ocean SSTs, that was discovered and named by
Steven Hare in 1997 (Mantua, 1997). A closely related term is the Interdecadal Pacifical Oscillation or
IPO which establishes similar variability in the N. and S. Pacific. Given the relatively recent discovery of
this climate mode, its long period, and the paucity of long records, not as much is understood about the
PDO, its teleconnections and their predictability. Often (e.g., Gershunov, et al, 1998) it is discussed as an
inter-decadal mode that modulates ENSO teleconnections, and most of the research on teleconnections
has been confined to the Pacific Rim region and the Western United States (Mccabe et al, 2004).

Given the long memory in the time series, computing the significance of correlations using the usual
tests is suspect. With that in mind, we can explore how this index correlates with the global min/max
temperature and precipitation as illustrated in Figure 4. The correlations with max/min temperature are
generally very similar and are marked by similar patterns in JFM, AMJ and OND that vary a bit spatially.
The PDO index in these seasons is positively correlated with the North Western quadrant of N. America,
the North Eastern section of S. America, North Eastern Australia, Indonesia and the Phillipines,
Equatorial to Southern Africa and S. India. It is negative correlated with Eastern North America and
Scandinavia. In JAS, the index is positively correlated with central equatorial Africa and S. Asia, with
negative correlations with eastern central Asia.

For precipitation, the linear relationships are generally much weaker, and are positive for South Western
N. America and the Hudson Bay region in JFM and negative for Northern N. America in JFM and for the
equatorial belt including C. Africa and the Sahel in JAS.

As was noted earlier, as the period of the oscillation increases, its impact on weather extremes likely
comes through a modulation of the impacts of the higher frequency components of the climate system
rather than directly. Nevertheless, large spatially coherent regions for temperature teleconnections are
identifiable from this analysis. Note that all data were linearly detrended prior to computing correlations
to remove the potential impacts of anthropogenic global warming. However, since the trend in global
temperature over the 20™ century is probably more exponential than linear, it is possible that much of
the temperature correlations seen in this analysis and the analysis with the NAO actually still relate to
the global warming signal shared in both data sets rather than a real response. The issue is more
pronounced with PDO since it is an SST based index, while the NAO is an atmospheric pressure based
index and is less closely related to temperature trends.
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Figure 4: PDO correlations

PDO correlations: Daily Maximum Temperature

corr Jan—Mar averaged PDO cofr Apr—Jun averaged PDO
with Jan-Mar averaged CRU TS3 Trnax (detrend) 1901:2005 p<10% with Apr—Jun averaged CRU TS3 Tmax (detrend) 1901:2005 p<10%

corr Jul—-Sep averaged PDO corr Oct—Dec averaged POO
with Jul=Sep averaged CRU TS3 Tmax (detrend) 1901:2005 p<10% with Oct—-Dec averaged CRU TS3 Tmaox {detrend) 1901:2005 p<i0%
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PDO correlations: Daily Minimum Temperature

corr Jan—-Mar averaged PDO corr Apr—Jun averaged PDO
with Jan=Mar averaged CRU TS3 Tmin {detrend} 13901:2006 p<10% with Apr=Jun averaged CRU TS3 Tmin {detrend) 1901:2008 p<10%

-0 -0 -0.4 =03 -8.2 0.2 02 o.4 a5 X -0 -0 -0.4 =03 -8.2 0.2 02 o.4 a5 X
corr Jul=Sep averaged PDO corr Oct—Dec averaged P
with Jul-Sep averaged CRU TS3 Tmin (detrend) 1801:2006 p<10% with Oct=Dec averaged CRU TS3 Tmin detrend) 1901:2008 p<10%
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PDO correlations: Daily Precipitation

carr Jan—-Mar averaged PDO carr Apr—Jun averaged PDO
with Jarn—Mar averaged CRU TS3 precipitation (detrend) 1901:2006 p<10% with Apr—Jun averaged CRU TS3 precipitation (detrend) 1801:2006 p<10%
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Jul-Sep averaged PDO orr Oet—Dec queraged POC

with Jul=Sep averaged CRU TS3 precipitation (detrend} 1901:2006 p<10% with Oct=Dec mreraged CRU TS3 precipitation (detrend) 1901:2006 p<10%
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AMO correlations

The AMO is defined (Kerr, 2000; Enfield et al 2001) using the SST field in the N. Atlantic, and is
characterized by a 60-80 year period. Given that the instrumental records are only about a century long,
the existence of the AMO is somewhat controversial. However, it has been reconstructed from long
proxy records (Gray et al, 2004; Hettzinger et al, 2008) and hence has a following. Its teleconnections to
precipitation and to streamflow have been studied (Knight et al , 2006; Mccabe et al, 2004) and its role
in moderating hurricane frequency in the Atlantic basin has also been assessed (Goldenberg, 2001;
Hettzinger et al, 2008; Elsner et al 2001).

With the same caveats for correlation analyses as were indicated for the PDO we can examine the
correlation of the AMO with the weather extreme variables in Figure 5. We note similar patterns for
daily maximum and minimum temperatures with weaker correlations by far for the minimum
temperature, consistent with previous analyses. The JFM and OND correlation patterns are generally
similar but somewhat weaker than the AMJ pattern. In JFM/OND the N.E. United States and Greenland,
Central to N. Africa, and Central S. America are positively correlated with the AMO index, while parts of
C. Asia are negatively correlated. For AMJ, Greenland, parts of the Middle East and Central China are
positively correlated while parts of Central S. America, S. Australia and S. India are negatively correlated.
For JAS, only Canada and Greenland show significant positive correlations. For precipitation there is
very little direct correlation. Perhaps, the only region to mention is Central Africa/Sahel which is
positively correlated in JAS. However, note that several authors point to strong determination of
seasonal precipitation by a combination of AMO, NAO, PDO and ENSO in places such as S. Florida. Such a
feature really does not emerge using a detrended correlation analysis using only AMO.
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Figure 5 AMO Correlations

AMO correlations: Daily Maximum Temperature

arr Jan—Mar averaged AMO e arr Apr—Jun averaged AMO e
with .Jan-unr averaged CRU TS3 Tmax 19{1-1 2{]05 p<10% with ﬁpr-dun averaged CRU TS3 Tmax 19&1 21’3[]5 p<10%

corr Jul—Sep averaged AMO ersst corr Oet—Dec averaged AMO ers
with Jul=Sep averaged CRU TS3 Tmaox 1901:2005 p<10% with Oct=Dec averaged CRU TS3 Tmax 1901 2{}(}5 p<10%
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AMO correlations: Daily Minimum Temperature

corr Jan—Mar averaged AMO ersst carr Apr—Jun_averaged AMO ersst
with Jan—Mar averaged CRU TS3 Tmin (detrend) 1901:2006 p<10% with Apr—Jun averaged CRU TS3 Triin (detrend) 1901:2006 p<10%
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) corr Jul=Sep averaged AMO ersst . corr Oct—Dec averaged AMO ersst
with Jul-Sep averaged CRU TS3 Tmin (detrend) 1801:2006 p<10% with Oct=Dec averaged CRU TS3 Tmin (detrend) 1901:2008 p<10%
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AMO correlations: Daily Precipitation

corr Jan—Mar averaged AMO ersst corr Apr—Jun averaged AMO erast
with Jarn—Mar averaged CRU TS3 precipitation (detrend) 1901:2006 p<10% with Apr—Jun averaged CRU T53 precipitation (detrend) 1801:2006 p<10%
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